Spaces:
Sleeping
Sleeping
File size: 11,685 Bytes
02cd9cf 3c75a49 02cd9cf 4f7397f 02cd9cf 453d9db 02cd9cf 5d309b2 02cd9cf 5d309b2 02cd9cf 5d309b2 9d2f7da 02cd9cf 9d2f7da 5d309b2 02cd9cf 9d2f7da 02cd9cf 5d309b2 02cd9cf 5d309b2 e67584b 02cd9cf a576bcd a87ce26 a576bcd a23e1b7 a576bcd 4f7397f a23e1b7 e67584b 5d309b2 a23e1b7 a87ce26 a23e1b7 a576bcd a23e1b7 a87ce26 a576bcd a23e1b7 a576bcd a87ce26 a576bcd a87ce26 a576bcd e67584b 5d309b2 a87ce26 a576bcd a87ce26 a576bcd a23e1b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# app.py
import os
import streamlit as st
st.set_page_config(page_title="Cardio Disease Predictor", layout="wide")
import torch
import re
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import speech_recognition as sr
from pydub import AudioSegment
import io
from audiorecorder import audiorecorder
# Configuration - Force CPU usage
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DEVICE = torch.device("cpu") # Force CPU only
# Load model and tokenizer with caching
@st.cache_resource
def load_model():
model_name = "Tufan1/BioClinicalBERT-Cardio-Classifier-Fold-per1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=1
).to(DEVICE)
model.eval()
return tokenizer, model
tokenizer, model = load_model()
# Medical mappings
MEDICAL_MAPPINGS = {
'gender': {1: "Female", 2: "Male"},
'cholesterol': {1: "Normal", 2: "Elevated", 3: "Peak"},
'glucose': {1: "Normal", 2: "High", 3: "Extreme"},
'binary': {0: "No", 1: "Yes"}
}
# Streamlit UI
#st.set_page_config(page_title="Cardio Disease Predictor", layout="wide")
st.title("🫀 Cardiovascular Disease Prediction")
def safe_extract(pattern, text, group=1, default=None):
"""Regex helper function"""
match = re.search(pattern, text, re.IGNORECASE)
return match.group(group).lower() if match else default
def text_to_features(text):
"""Extract features from text input"""
patterns = {
'age': r'(\d+)\s*(?:years?|yrs?|year-old)',
'gender': r'\b(male|female|man|woman)\b',
'height': r'(?:height|ht)\D*(\d+)\s*cm',
'weight': r'(?:weight|wt)\D*(\d+)\s*kg',
'bp': r'(?:blood pressure|bp)\D*(\d+)\s*/\s*(\d+)',
'cholesterol': r'(cholest(?:erol)?)\s*(?:is|level)?\s*(normal|elevated|peak)',
'glucose': r'(glucose|sugar)\s*(?:is|level)?\s*(normal|high|extreme)',
'smoke': r'\b(smokes?|smoking|smoke)\b',
'alco': r'\b(alcohol|drinks?)\b',
'active': r'\b(active|exercise|exercises)\b'
}
features = {
'age': int(safe_extract(patterns['age'], text, 1, '0')) or None,
'gender': 2 if safe_extract(patterns['gender'], text, 1, '').lower() in ['male', 'man'] else 1,
'height': int(safe_extract(patterns['height'], text, 1, '0')) or None,
'weight': int(safe_extract(patterns['weight'], text, 1, '0')) or None,
'ap_hi': None,
'ap_lo': None,
'cholesterol': 1,
'glucose': 1,
'smoke': 1 if safe_extract(patterns['smoke'], text) else 0,
'alco': 1 if safe_extract(patterns['alco'], text) else 0,
'active': 1 if safe_extract(patterns['active'], text) else 0
}
# BP handling
bp_match = re.search(patterns['bp'], text, re.IGNORECASE)
if bp_match and len(bp_match.groups()) == 2:
features['ap_hi'], features['ap_lo'] = map(int, bp_match.groups())
# Cholesterol/glucose mapping
chol_value = safe_extract(patterns['cholesterol'], text, 2)
if chol_value:
features['cholesterol'] = {'normal':1, 'elevated':2, 'peak':3}.get(chol_value, 1)
gluc_value = safe_extract(patterns['glucose'], text, 2)
if gluc_value:
features['glucose'] = {'normal':1, 'high':2, 'extreme':3}.get(gluc_value, 1)
return features
def process_audio(audio_file):
"""Handle audio uploads"""
try:
audio = AudioSegment.from_file(audio_file)
audio_io = io.BytesIO()
audio.export(audio_io, format="wav")
audio_io.seek(0)
recognizer = sr.Recognizer()
with sr.AudioFile(audio_io) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
return text
except Exception as e:
st.error(f"Audio processing error: {str(e)}")
return None
def predict(features):
"""Make prediction"""
input_text = f"""Patient Record:
- Age: {features['age']} years
- Gender: {MEDICAL_MAPPINGS['gender'][features['gender']]}
- Height: {features['height']} cm
- Weight: {features['weight']} kg
- BP: {features['ap_hi']}/{features['ap_lo']} mmHg
- Cholesterol: {MEDICAL_MAPPINGS['cholesterol'][features['cholesterol']]}
- Glucose: {MEDICAL_MAPPINGS['glucose'][features['glucose']]}
- Smoke: {MEDICAL_MAPPINGS['binary'][features['smoke']]}
- Alco: {MEDICAL_MAPPINGS['binary'][features['alco']]}
- Active: {MEDICAL_MAPPINGS['binary'][features['active']]}"""
inputs = tokenizer(
input_text,
max_length=512,
padding="max_length",
truncation=True,
return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
logits = model(**inputs).logits
prob = torch.sigmoid(logits).item()
return "Cardiovascular Disease" if prob >= 0.5 else "No Cardiovascular Disease", round(prob*100, 2)
# Main UI
input_type = st.radio("Select input method:", ["Manual Input", "Text Description", "Audio Recording"])
if input_type == "Manual Input":
with st.form("manual_input"):
col1, col2 = st.columns(2)
with col1:
age = st.number_input("Age (years)", 10, 120)
height = st.number_input("Height (cm)", 50, 250)
ap_hi = st.number_input("Systolic BP", 80, 250)
cholesterol = st.selectbox("Cholesterol", ["Normal", "Elevated", "Peak"])
smoke = st.selectbox("Smoke", ["Yes", "No"])
active = st.selectbox("Active", ["Yes", "No"])
with col2:
gender = st.selectbox("Gender", ["Female", "Male"])
weight = st.number_input("Weight (kg)", 30, 300)
ap_lo = st.number_input("Diastolic BP", 40, 150)
glucose = st.selectbox("Glucose", ["Normal", "High", "Extreme"])
alco = st.selectbox("Alco", ["Yes", "No"])
submitted = st.form_submit_button("Predict")
if submitted:
features = {
'age': age,
'gender': 1 if gender == "Female" else 2,
'height': height,
'weight': weight,
'ap_hi': ap_hi,
'ap_lo': ap_lo,
'cholesterol': ["Normal", "Elevated", "Peak"].index(cholesterol) + 1,
'glucose': ["Normal", "High", "Extreme"].index(glucose) + 1,
'smoke': 1 if smoke == "Yes" else 0,
'alco': 1 if alco == "Yes" else 0,
'active': 1 if active == "Yes" else 0,
}
prediction, confidence = predict(features)
st.success(f"**Prediction:** {prediction} (Confidence: {confidence}%)")
elif input_type == "Text Description":
text_input = st.text_area("Enter patient description:", height=150)
if st.button("Analyze Text"):
features = text_to_features(text_input)
if all(v is not None for v in features.values()):
prediction, confidence = predict(features)
st.success(f"**Prediction:** {prediction} (Confidence: {confidence}%)")
else:
st.warning("Could not extract all required parameters from text")
elif input_type == "Audio Recording":
st.subheader("🎙️ Record or Upload Audio")
# Upload audio file
audio_file = st.file_uploader("Upload audio file", type=["wav", "mp3", "ogg"])
# Record audio using mic (Streamlit extension)
try:
#from streamlit_audiorecorder import audiorecorder
recorded_audio = audiorecorder("Start Recording", "Stop Recording")
if recorded_audio is not None and len(recorded_audio) > 0:
if st.button("Transcribe & Predict (Recorded Audio)"):
try:
# If the recorder returns AudioSegment, convert to bytes
if isinstance(recorded_audio, AudioSegment):
audio_io = io.BytesIO()
recorded_audio.export(audio_io, format="wav")
audio_bytes = audio_io.getvalue()
else:
audio_bytes = recorded_audio
# Playback
st.audio(audio_bytes, format="audio/wav")
# Speech recognition
recognizer = sr.Recognizer()
with sr.AudioFile(io.BytesIO(audio_bytes)) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
st.markdown("**Transcribed Text:**")
st.info(text)
features = text_to_features(text)
missing = [k for k, v in features.items() if v is None]
if missing:
st.warning(f"Missing fields: {', '.join(missing)}. Using default values.")
features.setdefault("age", 50)
features.setdefault("gender", 2)
features.setdefault("height", 165)
features.setdefault("weight", 70)
features.setdefault("ap_hi", 120)
features.setdefault("ap_lo", 80)
features.setdefault("cholesterol", 1)
features.setdefault("glucose", 1)
features.setdefault("smoke", 0)
features.setdefault("alco", 1)
features.setdefault("active", 1)
prediction, confidence = predict(features)
st.success(f"**Prediction:** {prediction} (Confidence: {confidence}%)")
except Exception as e:
st.error(f"Recording Processing Error: {e}")
except Exception as e:
st.info("🎙️ Audio recording not supported in this environment.")
# Uploaded audio
if audio_file is not None:
if st.button("Transcribe & Predict (Uploaded Audio)"):
try:
audio_bytes = audio_file.read()
st.audio(audio_bytes, format=audio_file.type)
recognizer = sr.Recognizer()
with sr.AudioFile(io.BytesIO(audio_bytes)) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
st.markdown("**Transcribed Text:**")
st.info(text)
features = text_to_features(text)
missing = [k for k, v in features.items() if v is None]
if missing:
st.warning(f"Missing fields: {', '.join(missing)}. Using default values.")
features.setdefault("age", 50)
features.setdefault("gender", 2)
features.setdefault("height", 165)
features.setdefault("weight", 70)
features.setdefault("ap_hi", 120)
features.setdefault("ap_lo", 80)
features.setdefault("cholesterol", 1)
features.setdefault("glucose", 1)
features.setdefault("smoke", 0)
features.setdefault("alco", 1)
features.setdefault("active", 1)
prediction, confidence = predict(features)
st.success(f"**Prediction:** {prediction} (Confidence: {confidence}%)")
except Exception as e:
st.error(f"Uploaded Audio Error: {e}")
|