Spaces:
Sleeping
Sleeping
File size: 6,814 Bytes
6fd5cfa ce2c75c 95802bd ce2c75c 6fd5cfa a1f56e0 6fd5cfa a1f56e0 6fd5cfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
from transformers import AutoModel, AutoTokenizer,AutoProcessor
import streamlit as st
import os
from PIL import Image
from torchvision import io
import torchvision.transforms as transforms
import random
import easyocr
import numpy as np
import re
def start():
st.session_state.start = True
def reset():
del st.session_state['start']
del st.session_state.language
@st.cache_resource
def model():
model_path = "D:\IIT-r"
tokenize = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU',trust_remote_code = True)
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU',trust_remote_code= True,use_safetensors= True,pad_token_id=tokenize.eos_token_id)
model = model.eval()
return model, tokenize
@st.cache_data
def get_text(image_file,_model,_tokenizer):
res =_model.chat(_tokenizer,image_file,ocr_type= 'ocr')
return res
@st.cache_resource
def highlight_keywords(text, keywords):
colors = generate_unique_colors(len(keywords))
highlighted_text = text
found_keywords = []
for keyword, color in zip(keywords, colors):
if keyword.lower() in text.lower():
highlighted_text = highlighted_text.replace(keyword, f'<mark style="background-color: {color};">{keyword}</mark>')
found_keywords.append(keyword)
return highlighted_text, found_keywords
@st.cache_data
def generate_unique_colors(n):
colors = []
for i in range(n):
color = "#{:06x}".format(random.randint(0, 0xFFFFFF))
while color in colors:
color = "#{:06x}".format(random.randint(0, 0xFFFFFF))
colors.append(color)
return colors
@st.cache_data
def extract_text_easyocr(_image):
reader = easyocr.Reader(['hi'],gpu = False)
results = reader.readtext(np.array(_image))
# return results
return " ".join([result[1] for result in results])
def search():
st.session_state.search = True
if 'start' not in st.session_state:
st.session_state.start = False
if 'search' not in st.session_state:
st.session_state.search = False
if 'reset' not in st.session_state:
st.session_state.reset = False
if 'language' not in st.session_state:
st.session_state.language = False
with st.sidebar:
st.header("Instructions")
st.write("1. Choose a language (English or Hindi).")
st.write("2. Upload an image in JPG, PNG, or JPEG format.")
st.write("3. The app will extract text from the image using OCR.")
st.write("4. Enter keywords to search within the extracted text.")
st.write("5. If needed, click 'Reset' to upload a new image.")
st.sidebar.markdown("<br>" * 10, unsafe_allow_html=True)
st.write("🤖 Please wait while the model is processing... This may take a moment.")
st.header("Optical Character Recognition ")
col1, col2 = st.columns(2)
with col1:
if st.button('English'):
st.session_state.language = 'English'
st.experimental_rerun()
with col2:
if st.button('Hindi'):
st.session_state.language = 'Hindi'
st.experimental_rerun()
if st.session_state.language == 'English':
st.title("GOT OCR - Extract Text from Images")
st.write("Upload an image and let the GOT model extract the text!")
try:
MODEL, TOKENIZER = model()
st.success("GOT model loaded successfully")
except Exception as e:
st.error(f"Error loading GOT model: {str(e)}")
image_file = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
if image_file is not None:
st.image(image_file, caption="Uploaded Image", use_column_width=True)
if not os.path.exists("images"):
os.makedirs("images")
with open(f"images/{image_file.name}", "wb") as f:
f.write(image_file.getbuffer())
extracted_text = get_text(f"images/{image_file.name}", MODEL, TOKENIZER)
# st.session_state.extracted_text = extracted_text
st.subheader("Extracted Text:")
st.write(extracted_text)
keywords_input = st.text_input("Enter keywords to search within the extracted text (comma-separated):")
if keywords_input:
keywords = [keyword.strip().lower() for keyword in keywords_input.split(',')] # Convert keywords to lowercase
lower_extracted_text = extracted_text.lower() # Convert extracted text to lowercase
highlighted_text, found_keywords = highlight_keywords(lower_extracted_text, keywords)
st.button("Search", on_click=search)
if st.session_state.search:
if found_keywords:
st.markdown(highlighted_text, unsafe_allow_html=True)
st.write(f"Found keywords: {', '.join(found_keywords)}")
else:
st.warning("No keywords found in the extracted text.")
not_found_keywords = set(keywords) - set(found_keywords)
if not_found_keywords:
st.error(f"Keywords not found: {', '.join(not_found_keywords)}")
st.button("Reset and Upload New Image",on_click=reset)
elif st.session_state.language == 'Hindi':
st.title("HINDI OCR - Extract Text from Images")
st.write("Upload an image and let EasyOCR extract the text!")
image_file_hi = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
if image_file_hi:
st.image(image_file_hi, caption="Uploaded Image", use_column_width=True)
image = Image.open(image_file_hi)
extracted_text_hindi =extract_text_easyocr(image)
st.subheader("Extracted Text:")
st.write(extracted_text_hindi)
keywords_input = st.text_input("Enter keywords to search within the extracted text (comma-separated):")
if keywords_input:
keywords = [keyword.strip() for keyword in keywords_input.split(',')]
highlighted_text, found_keywords = highlight_keywords(extracted_text_hindi, keywords)
st.subheader("Search Results:")
if found_keywords:
st.markdown(highlighted_text, unsafe_allow_html=True)
st.write(f"Found keywords: {', '.join(found_keywords)}")
else:
st.warning("No keywords found in the extracted text.")
not_found_keywords = set(keywords) - set(found_keywords)
if not_found_keywords:
st.error(f"Keywords not found: {', '.join(not_found_keywords)}")
st.button("Reset and Upload New Image",on_click=reset) |