File size: 8,928 Bytes
193c713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import glob
import os
import re
import subprocess
from collections import OrderedDict

import lpips
import numpy as np
import torch
import torch.distributed as dist
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim

from .matlab_resize import imresize


def reduce_tensors(metrics):
    new_metrics = {}
    for k, v in metrics.items():
        if isinstance(v, torch.Tensor):
            dist.all_reduce(v)
            v = v / dist.get_world_size()
        if type(v) is dict:
            v = reduce_tensors(v)
        new_metrics[k] = v
    return new_metrics


def tensors_to_scalars(tensors):
    if isinstance(tensors, torch.Tensor):
        tensors = tensors.item()
        return tensors
    elif isinstance(tensors, dict):
        new_tensors = {}
        for k, v in tensors.items():
            v = tensors_to_scalars(v)
            new_tensors[k] = v
        return new_tensors
    elif isinstance(tensors, list):
        return [tensors_to_scalars(v) for v in tensors]
    else:
        return tensors


def tensors_to_np(tensors):
    if isinstance(tensors, dict):
        new_np = {}
        for k, v in tensors.items():
            if isinstance(v, torch.Tensor):
                v = v.cpu().numpy()
            if type(v) is dict:
                v = tensors_to_np(v)
            new_np[k] = v
    elif isinstance(tensors, list):
        new_np = []
        for v in tensors:
            if isinstance(v, torch.Tensor):
                v = v.cpu().numpy()
            if type(v) is dict:
                v = tensors_to_np(v)
            new_np.append(v)
    elif isinstance(tensors, torch.Tensor):
        v = tensors
        if isinstance(v, torch.Tensor):
            v = v.cpu().numpy()
        if type(v) is dict:
            v = tensors_to_np(v)
        new_np = v
    else:
        raise Exception(f'tensors_to_np does not support type {type(tensors)}.')
    return new_np


def move_to_cpu(tensors):
    ret = {}
    for k, v in tensors.items():
        if isinstance(v, torch.Tensor):
            v = v.cpu()
        if type(v) is dict:
            v = move_to_cpu(v)
        ret[k] = v
    return ret


def move_to_cuda(batch, gpu_id=0):
    # base case: object can be directly moved using `cuda` or `to`
    if callable(getattr(batch, 'cuda', None)):
        return batch.cuda(gpu_id, non_blocking=True)
    elif callable(getattr(batch, 'to', None)):
        return batch.to(torch.device('cuda', gpu_id), non_blocking=True)
    elif isinstance(batch, list):
        for i, x in enumerate(batch):
            batch[i] = move_to_cuda(x, gpu_id)
        return batch
    elif isinstance(batch, tuple):
        batch = list(batch)
        for i, x in enumerate(batch):
            batch[i] = move_to_cuda(x, gpu_id)
        return tuple(batch)
    elif isinstance(batch, dict):
        for k, v in batch.items():
            batch[k] = move_to_cuda(v, gpu_id)
        return batch
    return batch


def get_last_checkpoint(work_dir, steps=None):
    checkpoint = None
    last_ckpt_path = None
    ckpt_paths = get_all_ckpts(work_dir, steps)
    if len(ckpt_paths) > 0:
        last_ckpt_path = ckpt_paths[0]
        checkpoint = torch.load(last_ckpt_path, map_location='cpu')
    return checkpoint, last_ckpt_path


def get_all_ckpts(work_dir, steps=None):
    if steps is None:
        ckpt_path_pattern = f'{work_dir}/model_ckpt_steps_*.ckpt'
    else:
        ckpt_path_pattern = f'{work_dir}/model_ckpt_steps_{steps}.ckpt'
    return sorted(glob.glob(ckpt_path_pattern),
                  key=lambda x: -int(re.findall('.*steps\_(\d+)\.ckpt', x)[0]))


def load_checkpoint(model, optimizer, work_dir, steps=None):
    checkpoint, last_ckpt_path = get_last_checkpoint(work_dir, steps)
    print(f'loding check from: {last_ckpt_path}')
    if checkpoint is not None:
        stat_dict = checkpoint['state_dict']['model']
        
        new_state_dict = OrderedDict()
        for k, v in stat_dict.items():
            if k[:7] == 'module.':
                k = k[7:]  # εŽ»ζŽ‰ `module.`
            new_state_dict[k] = v
        
        model.load_state_dict(new_state_dict)
        model.cuda()
        optimizer.load_state_dict(checkpoint['optimizer_states'][0])
        training_step = checkpoint['global_step']
        del checkpoint
        torch.cuda.empty_cache()
    else:
        training_step = 0
        model.cuda()
    return training_step


def save_checkpoint(model, optimizer, work_dir, global_step, num_ckpt_keep):
    ckpt_path = f'{work_dir}/model_ckpt_steps_{global_step}.ckpt'
    print(f'Step@{global_step}: saving model to {ckpt_path}')
    checkpoint = {'global_step': global_step}
    optimizer_states = []
    optimizer_states.append(optimizer.state_dict())
    checkpoint['optimizer_states'] = optimizer_states
    checkpoint['state_dict'] = {'model': model.state_dict()}
    torch.save(checkpoint, ckpt_path, _use_new_zipfile_serialization=False)
    for old_ckpt in get_all_ckpts(work_dir)[num_ckpt_keep:]:
        remove_file(old_ckpt)
        print(f'Delete ckpt: {os.path.basename(old_ckpt)}')


def remove_file(*fns):
    for f in fns:
        subprocess.check_call(f'rm -rf "{f}"', shell=True)


def plot_img(img):
    img = img.data.cpu().numpy()
    return np.clip(img, 0, 1)


def load_ckpt(cur_model, ckpt_base_dir, model_name='model', force=True, strict=True):
    if os.path.isfile(ckpt_base_dir):
        base_dir = os.path.dirname(ckpt_base_dir)
        ckpt_path = ckpt_base_dir
        checkpoint = torch.load(ckpt_base_dir, map_location='cpu')
    else:
        base_dir = ckpt_base_dir
        checkpoint, ckpt_path = get_last_checkpoint(ckpt_base_dir)
    if checkpoint is not None:
        state_dict = checkpoint["state_dict"]
        if len([k for k in state_dict.keys() if '.' in k]) > 0:
            state_dict = {k[len(model_name) + 1:]: v for k, v in state_dict.items()
                          if k.startswith(f'{model_name}.')}
        else:
            state_dict = state_dict[model_name]
        if not strict:
            cur_model_state_dict = cur_model.state_dict()
            unmatched_keys = []
            for key, param in state_dict.items():
                if key in cur_model_state_dict:
                    new_param = cur_model_state_dict[key]
                    if new_param.shape != param.shape:
                        unmatched_keys.append(key)
                        print("| Unmatched keys: ", key, new_param.shape, param.shape)
            for key in unmatched_keys:
                del state_dict[key]
        cur_model.load_state_dict(state_dict, strict=strict)
        print(f"| load '{model_name}' from '{ckpt_path}'.")
    else:
        e_msg = f"| ckpt not found in {base_dir}."
        if force:
            assert False, e_msg
        else:
            print(e_msg)


class Measure:
    def __init__(self, net='alex'):
        self.model = lpips.LPIPS(net=net)
    
    def measure(self, imgA, imgB, img_lr, sr_scale):
        """

        Args:
            imgA: [C, H, W] uint8 or torch.FloatTensor [-1,1]
            imgB: [C, H, W] uint8 or torch.FloatTensor [-1,1]
            img_lr: [C, H, W] uint8  or torch.FloatTensor [-1,1]
            sr_scale:

        Returns: dict of metrics

        """
        if isinstance(imgA, torch.Tensor):
            imgA = np.round((imgA.cpu().numpy() + 1) * 127.5).clip(min=0, max=255).astype(np.uint8)
            imgB = np.round((imgB.cpu().numpy() + 1) * 127.5).clip(min=0, max=255).astype(np.uint8)
            img_lr = np.round((img_lr.cpu().numpy() + 1) * 127.5).clip(min=0, max=255).astype(np.uint8)
        imgA = imgA.transpose(1, 2, 0)
        imgA_lr = imresize(imgA, 1 / sr_scale)
        imgB = imgB.transpose(1, 2, 0)
        img_lr = img_lr.transpose(1, 2, 0)
        psnr = self.psnr(imgA, imgB)
        ssim = self.ssim(imgA, imgB)
        lpips = self.lpips(imgA, imgB)
        lr_psnr = self.psnr(imgA_lr, img_lr)
        res = {'psnr': psnr, 'ssim': ssim, 'lpips': lpips, 'lr_psnr': lr_psnr}
        return {k: float(v) for k, v in res.items()}
    
    def lpips(self, imgA, imgB, model=None):
        device = next(self.model.parameters()).device
        tA = t(imgA).to(device)
        tB = t(imgB).to(device)
        dist01 = self.model.forward(tA, tB).item()
        return dist01
    
    def ssim(self, imgA, imgB):
        score, diff = ssim(imgA, imgB, full=True, channel_axis=2, data_range=255)
        return score
    
    def psnr(self, imgA, imgB):
        return psnr(imgA, imgB, data_range=255)


def t(img):
    def to_4d(img):
        assert len(img.shape) == 3
        img_new = np.expand_dims(img, axis=0)
        assert len(img_new.shape) == 4
        return img_new
    
    def to_CHW(img):
        return np.transpose(img, [2, 0, 1])
    
    def to_tensor(img):
        return torch.Tensor(img)
    
    return to_tensor(to_4d(to_CHW(img))) / 127.5 - 1