Spaces:
Runtime error
Runtime error
File size: 15,432 Bytes
193c713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import importlib
import json
import os
import subprocess
import sys
from collections import OrderedDict
from pathlib import Path
parent_path = Path(__file__).absolute().parent.parent
sys.path.append(os.path.abspath(parent_path))
os.chdir(parent_path)
print(f'>-------------> parent path {parent_path}')
print(f'>-------------> current work dir {os.getcwd()}')
cache_path = os.path.join(parent_path, 'cache')
os.environ["HF_DATASETS_CACHE"] = cache_path
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["torch_HOME"] = cache_path
import torch
from PIL import Image
from tqdm import tqdm
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from sam_diffsr.utils_sr.hparams import hparams, set_hparams
from sam_diffsr.utils_sr.utils import plot_img, move_to_cuda, load_checkpoint, save_checkpoint, tensors_to_scalars, Measure, \
get_all_ckpts
class Trainer:
def __init__(self):
self.logger = self.build_tensorboard(save_dir=hparams['work_dir'], name='tb_logs')
self.measure = Measure()
self.dataset_cls = None
self.metric_keys = ['psnr', 'ssim', 'lpips', 'lr_psnr']
self.metric_2_keys = ['psnr-Y', 'ssim', 'fid']
self.work_dir = hparams['work_dir']
self.first_val = True
self.val_steps = hparams['val_steps']
def build_tensorboard(self, save_dir, name, **kwargs):
log_dir = os.path.join(save_dir, name)
os.makedirs(log_dir, exist_ok=True)
return SummaryWriter(log_dir=log_dir, **kwargs)
def build_train_dataloader(self):
dataset = self.dataset_cls('train')
return torch.utils.data.DataLoader(
dataset, batch_size=hparams['batch_size'], shuffle=True,
pin_memory=False, num_workers=hparams['num_workers'])
def build_val_dataloader(self):
return torch.utils.data.DataLoader(
self.dataset_cls('valid'), batch_size=hparams['eval_batch_size'], shuffle=False, pin_memory=False)
def build_test_dataloader(self):
return torch.utils.data.DataLoader(
self.dataset_cls('test'), batch_size=hparams['eval_batch_size'], shuffle=False, pin_memory=False)
def build_model(self):
raise NotImplementedError
def sample_and_test(self, sample):
raise NotImplementedError
def build_optimizer(self, model):
raise NotImplementedError
def build_scheduler(self, optimizer):
raise NotImplementedError
def training_step(self, batch):
raise NotImplementedError
def train(self):
model = self.build_model()
optimizer = self.build_optimizer(model)
self.global_step = training_step = load_checkpoint(model, optimizer, hparams['work_dir'], steps=self.val_steps)
self.scheduler = scheduler = self.build_scheduler(optimizer)
scheduler.step(training_step)
dataloader = self.build_train_dataloader()
train_pbar = tqdm(dataloader, initial=training_step, total=float('inf'),
dynamic_ncols=True, unit='step')
while self.global_step < hparams['max_updates']:
for batch in train_pbar:
if training_step % hparams['val_check_interval'] == 0:
with torch.no_grad():
model.eval()
self.validate(training_step)
save_checkpoint(model, optimizer, self.work_dir, training_step, hparams['num_ckpt_keep'])
model.train()
batch = move_to_cuda(batch)
losses, total_loss = self.training_step(batch)
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
training_step += 1
scheduler.step(training_step)
self.global_step = training_step
if training_step % 100 == 0:
self.log_metrics({f'tr/{k}': v for k, v in losses.items()}, training_step)
train_pbar.set_postfix(**tensors_to_scalars(losses))
def validate(self, training_step):
val_dataloader = self.build_val_dataloader()
pbar = tqdm(enumerate(val_dataloader), total=len(val_dataloader))
metrics = {}
for batch_idx, batch in pbar:
# 每次运行的第一次validation只跑一小部分数据,来验证代码能否跑通
if self.first_val and batch_idx > hparams['num_sanity_val_steps'] - 1:
break
batch = move_to_cuda(batch)
img, rrdb_out, ret = self.sample_and_test(batch)
img_hr = batch['img_hr']
img_lr = batch['img_lr']
img_lr_up = batch['img_lr_up']
if img is not None:
self.logger.add_image(f'Pred_{batch_idx}', plot_img(img[0]), self.global_step)
if hparams.get('aux_l1_loss'):
self.logger.add_image(f'rrdb_out_{batch_idx}', plot_img(rrdb_out[0]), self.global_step)
if self.global_step <= hparams['val_check_interval']:
self.logger.add_image(f'HR_{batch_idx}', plot_img(img_hr[0]), self.global_step)
self.logger.add_image(f'LR_{batch_idx}', plot_img(img_lr[0]), self.global_step)
self.logger.add_image(f'BL_{batch_idx}', plot_img(img_lr_up[0]), self.global_step)
metrics = {}
metrics.update({k: np.mean(ret[k]) for k in self.metric_keys})
pbar.set_postfix(**tensors_to_scalars(metrics))
if hparams['infer']:
print('Val results:', metrics)
else:
if not self.first_val:
self.log_metrics({f'val/{k}': v for k, v in metrics.items()}, training_step)
print('Val results:', metrics)
else:
print('Sanity val results:', metrics)
self.first_val = False
def build_test_my_dataloader(self, data_name):
return torch.utils.data.DataLoader(
self.dataset_cls(data_name), batch_size=hparams['eval_batch_size'], shuffle=False, pin_memory=False)
def benchmark(self, benchmark_name_list, metric_list):
from sam_diffsr.tools.caculate_iqa import eval_img_IQA
model = self.build_model()
optimizer = self.build_optimizer(model)
training_step = load_checkpoint(model, optimizer, hparams['work_dir'], hparams['val_steps'])
self.global_step = training_step
optimizer = None
for data_name in benchmark_name_list:
test_dataloader = self.build_test_my_dataloader(data_name)
self.results = {k: 0 for k in self.metric_keys}
self.n_samples = 0
self.gen_dir = f"{hparams['work_dir']}/results_{self.global_step}_{hparams['gen_dir_name']}/benchmark/{data_name}"
if hparams['test_save_png']:
subprocess.check_call(f'rm -rf {self.gen_dir}', shell=True)
os.makedirs(f'{self.gen_dir}/outputs', exist_ok=True)
os.makedirs(f'{self.gen_dir}/SR', exist_ok=True)
self.model.sample_tqdm = False
torch.backends.cudnn.benchmark = False
if hparams['test_save_png']:
if hasattr(self.model.denoise_fn, 'make_generation_fast_'):
self.model.denoise_fn.make_generation_fast_()
os.makedirs(f'{self.gen_dir}/HR', exist_ok=True)
result_dict = {}
with torch.no_grad():
model.eval()
pbar = tqdm(enumerate(test_dataloader), total=len(test_dataloader))
for batch_idx, batch in pbar:
move_to_cuda(batch)
gen_dir = self.gen_dir
item_names = batch['item_name']
img_hr = batch['img_hr']
img_lr = batch['img_lr']
img_lr_up = batch['img_lr_up']
res = self.sample_and_test(batch)
if len(res) == 3:
img_sr, rrdb_out, ret = res
else:
img_sr, ret = res
rrdb_out = img_sr
img_lr_up = batch.get('img_lr_up', img_lr_up)
if img_sr is not None:
metrics = list(self.metric_keys)
result_dict[batch['item_name'][0]] = {}
for k in metrics:
self.results[k] += ret[k]
result_dict[batch['item_name'][0]][k] = ret[k]
self.n_samples += ret['n_samples']
print({k: round(self.results[k] / self.n_samples, 3) for k in self.results}, 'total:',
self.n_samples)
if hparams['test_save_png'] and img_sr is not None:
img_sr = self.tensor2img(img_sr)
img_hr = self.tensor2img(img_hr)
img_lr = self.tensor2img(img_lr)
img_lr_up = self.tensor2img(img_lr_up)
rrdb_out = self.tensor2img(rrdb_out)
for item_name, hr_p, hr_g, lr, lr_up, rrdb_o in zip(
item_names, img_sr, img_hr, img_lr, img_lr_up, rrdb_out):
item_name = os.path.splitext(item_name)[0]
hr_p = Image.fromarray(hr_p)
hr_g = Image.fromarray(hr_g)
hr_p.save(f"{gen_dir}/SR/{item_name}.png")
hr_g.save(f"{gen_dir}/HR/{item_name}.png")
exp_name = hparams['work_dir'].split('/')[-1]
sr_img_dir = f"{gen_dir}/SR/"
gt_img_dir = f"{gen_dir}/HR/"
excel_path = f"{hparams['work_dir']}/IQA-val-benchmark-{exp_name}.xlsx"
epoch = training_step
eval_img_IQA(gt_img_dir, sr_img_dir, excel_path, metric_list, epoch, data_name)
os.makedirs(f'{self.gen_dir}', exist_ok=True)
eval_json_path = os.path.join(self.gen_dir, 'eval.json')
avg_result = {k: round(self.results[k] / self.n_samples, 4) for k in self.results}
with open(eval_json_path, 'w+') as file:
json.dump(avg_result, file, sort_keys=True, indent=4, separators=(',', ': '), ensure_ascii=False)
json.dump(result_dict, file, sort_keys=True, indent=4, separators=(',', ': '), ensure_ascii=False)
def benchmark_loop(self, benchmark_name_list, metric_list, gt_path):
# infer and evaluation all save checkpoint
from sam_diffsr.tools.caculate_iqa import eval_img_IQA
model = self.build_model()
def get_checkpoint(model, checkpoint):
stat_dict = checkpoint['state_dict']['model']
new_state_dict = OrderedDict()
for k, v in stat_dict.items():
if k[:7] == 'module.':
k = k[7:] # 去掉 `module.`
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
model.cuda()
training_step = checkpoint['global_step']
del checkpoint
torch.cuda.empty_cache()
return training_step
ckpt_paths = get_all_ckpts(hparams['work_dir'])
for ckpt_path in ckpt_paths:
checkpoint = torch.load(ckpt_path, map_location='cpu')
training_step = get_checkpoint(model, checkpoint)
self.global_step = training_step
for data_name in benchmark_name_list:
test_dataloader = self.build_test_my_dataloader(data_name)
self.results = {k: 0 for k in self.metric_keys + self.metric_2_keys}
self.n_samples = 0
self.gen_dir = f"{hparams['work_dir']}/results_{training_step}_{hparams['gen_dir_name']}/benchmark/{data_name}"
os.makedirs(f'{self.gen_dir}/outputs', exist_ok=True)
os.makedirs(f'{self.gen_dir}/SR', exist_ok=True)
self.model.sample_tqdm = False
torch.backends.cudnn.benchmark = False
with torch.no_grad():
model.eval()
pbar = tqdm(enumerate(test_dataloader), total=len(test_dataloader))
for batch_idx, batch in pbar:
move_to_cuda(batch)
gen_dir = self.gen_dir
item_names = batch['item_name']
res = self.sample_and_test(batch)
if len(res) == 3:
img_sr, rrdb_out, ret = res
else:
img_sr, ret = res
rrdb_out = img_sr
img_sr = self.tensor2img(img_sr)
for item_name, hr_p in zip(item_names, img_sr):
item_name = os.path.splitext(item_name)[0]
hr_p = Image.fromarray(hr_p)
hr_p.save(f"{gen_dir}/SR/{item_name}.png")
exp_name = hparams['work_dir'].split('/')[-1]
sr_img_dir = f"{gen_dir}/SR/"
gt_img_dir = f"{gt_path}/{data_name}/HR"
excel_path = f"{hparams['work_dir']}/IQA-val-benchmark_loop-{exp_name}.xlsx"
epoch = training_step
eval_img_IQA(gt_img_dir, sr_img_dir, excel_path, metric_list, epoch, data_name)
# utils_sr
def log_metrics(self, metrics, step):
metrics = self.metrics_to_scalars(metrics)
logger = self.logger
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
logger.add_scalar(k, v, step)
def metrics_to_scalars(self, metrics):
new_metrics = {}
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
if type(v) is dict:
v = self.metrics_to_scalars(v)
new_metrics[k] = v
return new_metrics
@staticmethod
def tensor2img(img):
img = np.round((img.permute(0, 2, 3, 1).cpu().numpy() + 1) * 127.5)
img = img.clip(min=0, max=255).astype(np.uint8)
return img
if __name__ == '__main__':
set_hparams()
pkg = ".".join(hparams["trainer_cls"].split(".")[:-1])
cls_name = hparams["trainer_cls"].split(".")[-1]
trainer = getattr(importlib.import_module(pkg), cls_name)()
if hparams['benchmark_loop']:
trainer.benchmark_loop(hparams['benchmark_name_list'], hparams['metric_list'], hparams['gt_img_path'])
elif hparams['benchmark']:
trainer.benchmark(hparams['benchmark_name_list'], hparams['metric_list'])
else:
trainer.train()
|