File size: 16,281 Bytes
0032d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Tune GPT2 to generate positive reviews\n",
    "> Optimise GPT2 to produce positive IMDB movie reviews using a BERT sentiment classifier as a reward function."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div style=\"text-align: center\">\n",
    "<img src='https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gpt2_bert_training.png' width='600'>\n",
    "<p style=\"text-align: center;\"> <b>Figure:</b> Experiment setup to tune GPT2. The yellow arrows are outside the scope of this notebook, but the trained models are available through Hugging Face. </p>\n",
    "</div>\n",
    "\n",
    "\n",
    "In this notebook we fine-tune GPT2 (small) to generate positive movie reviews based on the IMDB dataset. The model gets the start of a real review and is tasked to produce positive continuations. To reward positive continuations we use a BERT classifier to analyse the sentiment of the produced sentences and use the classifier's outputs as rewards signals for PPO training."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Setup experiment"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Import dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install transformers trl wandb"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from tqdm import tqdm\n",
    "import pandas as pd\n",
    "\n",
    "tqdm.pandas()\n",
    "\n",
    "from transformers import pipeline, AutoTokenizer\n",
    "from datasets import load_dataset\n",
    "\n",
    "from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead\n",
    "from trl.core import LengthSampler"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Configuration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "config = PPOConfig(\n",
    "    model_name=\"lvwerra/gpt2-imdb\",\n",
    "    learning_rate=1.41e-5,\n",
    "    log_with=\"wandb\",\n",
    ")\n",
    "\n",
    "sent_kwargs = {\"return_all_scores\": True, \"function_to_apply\": \"none\", \"batch_size\": 16}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import wandb\n",
    "\n",
    "wandb.init()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can see that we load a GPT2 model called `gpt2_imdb`. This model was additionally fine-tuned on the IMDB dataset for 1 epoch with the huggingface [script](https://github.com/huggingface/transformers/blob/master/examples/run_language_modeling.py) (no special settings). The other parameters are mostly taken from the original paper [\"Fine-Tuning Language Models from Human Preferences\"](\n",
    "https://arxiv.org/pdf/1909.08593.pdf). This model as well as the BERT model is available in the Huggingface model zoo [here](https://huggingface.co/models). The following code should automatically download the models."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Load data and models"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load IMDB dataset\n",
    "The IMDB dataset contains 50k movie review annotated with \"positive\"/\"negative\" feedback indicating the sentiment.  We load the IMDB dataset into a DataFrame and filter for comments that are at least 200 characters. Then we tokenize each text and cut it to random size with the `LengthSampler`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def build_dataset(config, dataset_name=\"imdb\", input_min_text_length=2, input_max_text_length=8):\n",
    "    \"\"\"\n",
    "    Build dataset for training. This builds the dataset from `load_dataset`, one should\n",
    "    customize this function to train the model on its own dataset.\n",
    "\n",
    "    Args:\n",
    "        dataset_name (`str`):\n",
    "            The name of the dataset to be loaded.\n",
    "\n",
    "    Returns:\n",
    "        dataloader (`torch.utils.data.DataLoader`):\n",
    "            The dataloader for the dataset.\n",
    "    \"\"\"\n",
    "    tokenizer = AutoTokenizer.from_pretrained(config.model_name)\n",
    "    tokenizer.pad_token = tokenizer.eos_token\n",
    "    # load imdb with datasets\n",
    "    ds = load_dataset(dataset_name, split=\"train\")\n",
    "    ds = ds.rename_columns({\"text\": \"review\"})\n",
    "    ds = ds.filter(lambda x: len(x[\"review\"]) > 200, batched=False)\n",
    "\n",
    "    input_size = LengthSampler(input_min_text_length, input_max_text_length)\n",
    "\n",
    "    def tokenize(sample):\n",
    "        sample[\"input_ids\"] = tokenizer.encode(sample[\"review\"])[: input_size()]\n",
    "        sample[\"query\"] = tokenizer.decode(sample[\"input_ids\"])\n",
    "        return sample\n",
    "\n",
    "    ds = ds.map(tokenize, batched=False)\n",
    "    ds.set_format(type=\"torch\")\n",
    "    return ds"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset = build_dataset(config)\n",
    "\n",
    "\n",
    "def collator(data):\n",
    "    return dict((key, [d[key] for d in data]) for key in data[0])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load pre-trained GPT2 language models"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We load the GPT2 model with a value head and the tokenizer. We load the model twice; the first model is optimized while the second model serves as a reference to calculate the KL-divergence from the starting point. This serves as an additional reward signal in the PPO training to make sure the optimized model does not deviate too much from the original language model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)\n",
    "ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)\n",
    "tokenizer = AutoTokenizer.from_pretrained(config.model_name)\n",
    "\n",
    "tokenizer.pad_token = tokenizer.eos_token"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Initialize PPOTrainer\n",
    "The `PPOTrainer` takes care of device placement and optimization later on:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer, dataset=dataset, data_collator=collator)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load BERT classifier\n",
    "We load a BERT classifier fine-tuned on the IMDB dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "device = ppo_trainer.accelerator.device\n",
    "if ppo_trainer.accelerator.num_processes == 1:\n",
    "    device = 0 if torch.cuda.is_available() else \"cpu\"  # to avoid a `pipeline` bug\n",
    "sentiment_pipe = pipeline(\"sentiment-analysis\", model=\"lvwerra/distilbert-imdb\", device=device)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The model outputs are the logits for the negative and positive class. We will use the logits for positive class as a reward signal for the language model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"this movie was really bad!!\"\n",
    "sentiment_pipe(text, **sent_kwargs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"this movie was really good!!\"\n",
    "sentiment_pipe(text, **sent_kwargs)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Generation settings\n",
    "For the response generation we just use sampling and make sure top-k and nucleus sampling are turned off as well as a minimal length."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "gen_kwargs = {\"min_length\": -1, \"top_k\": 0.0, \"top_p\": 1.0, \"do_sample\": True, \"pad_token_id\": tokenizer.eos_token_id}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Optimize model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Training loop"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The training loop consists of the following main steps:\n",
    "1. Get the query responses from the policy network (GPT-2)\n",
    "2. Get sentiments for query/responses from BERT\n",
    "3. Optimize policy with PPO using the (query, response, reward) triplet\n",
    "\n",
    "**Training time**\n",
    "\n",
    "This step takes **~2h** on a V100 GPU with the above specified settings."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "output_min_length = 4\n",
    "output_max_length = 16\n",
    "output_length_sampler = LengthSampler(output_min_length, output_max_length)\n",
    "\n",
    "\n",
    "generation_kwargs = {\n",
    "    \"min_length\": -1,\n",
    "    \"top_k\": 0.0,\n",
    "    \"top_p\": 1.0,\n",
    "    \"do_sample\": True,\n",
    "    \"pad_token_id\": tokenizer.eos_token_id,\n",
    "}\n",
    "\n",
    "\n",
    "for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):\n",
    "    query_tensors = batch[\"input_ids\"]\n",
    "\n",
    "    #### Get response from gpt2\n",
    "    response_tensors = []\n",
    "    for query in query_tensors:\n",
    "        gen_len = output_length_sampler()\n",
    "        generation_kwargs[\"max_new_tokens\"] = gen_len\n",
    "        response = ppo_trainer.generate(query, **generation_kwargs)\n",
    "        response_tensors.append(response.squeeze()[-gen_len:])\n",
    "    batch[\"response\"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]\n",
    "\n",
    "    #### Compute sentiment score\n",
    "    texts = [q + r for q, r in zip(batch[\"query\"], batch[\"response\"])]\n",
    "    pipe_outputs = sentiment_pipe(texts, **sent_kwargs)\n",
    "    rewards = [torch.tensor(output[1][\"score\"]) for output in pipe_outputs]\n",
    "\n",
    "    #### Run PPO step\n",
    "    stats = ppo_trainer.step(query_tensors, response_tensors, rewards)\n",
    "    ppo_trainer.log_stats(stats, batch, rewards)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Training progress\n",
    "If you are tracking the training progress with Weights&Biases you should see a plot similar to the one below. Check out the interactive sample report on wandb.ai: [link](https://app.wandb.ai/huggingface/trl-showcase/runs/1jtvxb1m/).\n",
    "\n",
    "<div style=\"text-align: center\">\n",
    "<img src='https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gpt2_tuning_progress.png' width='800'>\n",
    "<p style=\"text-align: center;\"> <b>Figure:</b> Reward mean and distribution evolution during training. </p>\n",
    "</div>\n",
    "\n",
    "One can observe how the model starts to generate more positive outputs after a few optimisation steps.\n",
    "\n",
    "> Note: Investigating the KL-divergence will probably show that at this point the model has not converged to the target KL-divergence, yet. To get there would require longer training or starting with a higher initial coefficient."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model inspection\n",
    "Let's inspect some examples from the IMDB dataset. We can use `model_ref` to compare the tuned model `model` against the model before optimisation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#### get a batch from the dataset\n",
    "bs = 16\n",
    "game_data = dict()\n",
    "dataset.set_format(\"pandas\")\n",
    "df_batch = dataset[:].sample(bs)\n",
    "game_data[\"query\"] = df_batch[\"query\"].tolist()\n",
    "query_tensors = df_batch[\"input_ids\"].tolist()\n",
    "\n",
    "response_tensors_ref, response_tensors = [], []\n",
    "\n",
    "#### get response from gpt2 and gpt2_ref\n",
    "for i in range(bs):\n",
    "    gen_len = output_length_sampler()\n",
    "    output = ref_model.generate(\n",
    "        torch.tensor(query_tensors[i]).unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
    "    ).squeeze()[-gen_len:]\n",
    "    response_tensors_ref.append(output)\n",
    "    output = model.generate(\n",
    "        torch.tensor(query_tensors[i]).unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
    "    ).squeeze()[-gen_len:]\n",
    "    response_tensors.append(output)\n",
    "\n",
    "#### decode responses\n",
    "game_data[\"response (before)\"] = [tokenizer.decode(response_tensors_ref[i]) for i in range(bs)]\n",
    "game_data[\"response (after)\"] = [tokenizer.decode(response_tensors[i]) for i in range(bs)]\n",
    "\n",
    "#### sentiment analysis of query/response pairs before/after\n",
    "texts = [q + r for q, r in zip(game_data[\"query\"], game_data[\"response (before)\"])]\n",
    "game_data[\"rewards (before)\"] = [output[1][\"score\"] for output in sentiment_pipe(texts, **sent_kwargs)]\n",
    "\n",
    "texts = [q + r for q, r in zip(game_data[\"query\"], game_data[\"response (after)\"])]\n",
    "game_data[\"rewards (after)\"] = [output[1][\"score\"] for output in sentiment_pipe(texts, **sent_kwargs)]\n",
    "\n",
    "# store results in a dataframe\n",
    "df_results = pd.DataFrame(game_data)\n",
    "df_results"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Looking at the reward mean/median of the generated sequences we observe a significant difference."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"mean:\")\n",
    "display(df_results[[\"rewards (before)\", \"rewards (after)\"]].mean())\n",
    "print()\n",
    "print(\"median:\")\n",
    "display(df_results[[\"rewards (before)\", \"rewards (after)\"]].median())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Save model\n",
    "Finally, we save the model and push it to the Hugging Face for later usage."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save_pretrained(\"gpt2-imdb-pos-v2\", push_to_hub=True)\n",
    "tokenizer.save_pretrained(\"gpt2-imdb-pos-v2\", push_to_hub=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  },
  "vscode": {
   "interpreter": {
    "hash": "4c8ff454cd947027f86954d72bf940c689a97dcc494eb53cfe4813862c6065fe"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}