Spaces:
Runtime error
Runtime error
File size: 16,281 Bytes
0032d0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tune GPT2 to generate positive reviews\n",
"> Optimise GPT2 to produce positive IMDB movie reviews using a BERT sentiment classifier as a reward function."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<div style=\"text-align: center\">\n",
"<img src='https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gpt2_bert_training.png' width='600'>\n",
"<p style=\"text-align: center;\"> <b>Figure:</b> Experiment setup to tune GPT2. The yellow arrows are outside the scope of this notebook, but the trained models are available through Hugging Face. </p>\n",
"</div>\n",
"\n",
"\n",
"In this notebook we fine-tune GPT2 (small) to generate positive movie reviews based on the IMDB dataset. The model gets the start of a real review and is tasked to produce positive continuations. To reward positive continuations we use a BERT classifier to analyse the sentiment of the produced sentences and use the classifier's outputs as rewards signals for PPO training."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup experiment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install transformers trl wandb"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from tqdm import tqdm\n",
"import pandas as pd\n",
"\n",
"tqdm.pandas()\n",
"\n",
"from transformers import pipeline, AutoTokenizer\n",
"from datasets import load_dataset\n",
"\n",
"from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead\n",
"from trl.core import LengthSampler"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config = PPOConfig(\n",
" model_name=\"lvwerra/gpt2-imdb\",\n",
" learning_rate=1.41e-5,\n",
" log_with=\"wandb\",\n",
")\n",
"\n",
"sent_kwargs = {\"return_all_scores\": True, \"function_to_apply\": \"none\", \"batch_size\": 16}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import wandb\n",
"\n",
"wandb.init()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can see that we load a GPT2 model called `gpt2_imdb`. This model was additionally fine-tuned on the IMDB dataset for 1 epoch with the huggingface [script](https://github.com/huggingface/transformers/blob/master/examples/run_language_modeling.py) (no special settings). The other parameters are mostly taken from the original paper [\"Fine-Tuning Language Models from Human Preferences\"](\n",
"https://arxiv.org/pdf/1909.08593.pdf). This model as well as the BERT model is available in the Huggingface model zoo [here](https://huggingface.co/models). The following code should automatically download the models."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load data and models"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load IMDB dataset\n",
"The IMDB dataset contains 50k movie review annotated with \"positive\"/\"negative\" feedback indicating the sentiment. We load the IMDB dataset into a DataFrame and filter for comments that are at least 200 characters. Then we tokenize each text and cut it to random size with the `LengthSampler`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def build_dataset(config, dataset_name=\"imdb\", input_min_text_length=2, input_max_text_length=8):\n",
" \"\"\"\n",
" Build dataset for training. This builds the dataset from `load_dataset`, one should\n",
" customize this function to train the model on its own dataset.\n",
"\n",
" Args:\n",
" dataset_name (`str`):\n",
" The name of the dataset to be loaded.\n",
"\n",
" Returns:\n",
" dataloader (`torch.utils.data.DataLoader`):\n",
" The dataloader for the dataset.\n",
" \"\"\"\n",
" tokenizer = AutoTokenizer.from_pretrained(config.model_name)\n",
" tokenizer.pad_token = tokenizer.eos_token\n",
" # load imdb with datasets\n",
" ds = load_dataset(dataset_name, split=\"train\")\n",
" ds = ds.rename_columns({\"text\": \"review\"})\n",
" ds = ds.filter(lambda x: len(x[\"review\"]) > 200, batched=False)\n",
"\n",
" input_size = LengthSampler(input_min_text_length, input_max_text_length)\n",
"\n",
" def tokenize(sample):\n",
" sample[\"input_ids\"] = tokenizer.encode(sample[\"review\"])[: input_size()]\n",
" sample[\"query\"] = tokenizer.decode(sample[\"input_ids\"])\n",
" return sample\n",
"\n",
" ds = ds.map(tokenize, batched=False)\n",
" ds.set_format(type=\"torch\")\n",
" return ds"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset = build_dataset(config)\n",
"\n",
"\n",
"def collator(data):\n",
" return dict((key, [d[key] for d in data]) for key in data[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load pre-trained GPT2 language models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We load the GPT2 model with a value head and the tokenizer. We load the model twice; the first model is optimized while the second model serves as a reference to calculate the KL-divergence from the starting point. This serves as an additional reward signal in the PPO training to make sure the optimized model does not deviate too much from the original language model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)\n",
"ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)\n",
"tokenizer = AutoTokenizer.from_pretrained(config.model_name)\n",
"\n",
"tokenizer.pad_token = tokenizer.eos_token"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize PPOTrainer\n",
"The `PPOTrainer` takes care of device placement and optimization later on:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer, dataset=dataset, data_collator=collator)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load BERT classifier\n",
"We load a BERT classifier fine-tuned on the IMDB dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"device = ppo_trainer.accelerator.device\n",
"if ppo_trainer.accelerator.num_processes == 1:\n",
" device = 0 if torch.cuda.is_available() else \"cpu\" # to avoid a `pipeline` bug\n",
"sentiment_pipe = pipeline(\"sentiment-analysis\", model=\"lvwerra/distilbert-imdb\", device=device)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The model outputs are the logits for the negative and positive class. We will use the logits for positive class as a reward signal for the language model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"this movie was really bad!!\"\n",
"sentiment_pipe(text, **sent_kwargs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"this movie was really good!!\"\n",
"sentiment_pipe(text, **sent_kwargs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generation settings\n",
"For the response generation we just use sampling and make sure top-k and nucleus sampling are turned off as well as a minimal length."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gen_kwargs = {\"min_length\": -1, \"top_k\": 0.0, \"top_p\": 1.0, \"do_sample\": True, \"pad_token_id\": tokenizer.eos_token_id}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Optimize model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Training loop"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The training loop consists of the following main steps:\n",
"1. Get the query responses from the policy network (GPT-2)\n",
"2. Get sentiments for query/responses from BERT\n",
"3. Optimize policy with PPO using the (query, response, reward) triplet\n",
"\n",
"**Training time**\n",
"\n",
"This step takes **~2h** on a V100 GPU with the above specified settings."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output_min_length = 4\n",
"output_max_length = 16\n",
"output_length_sampler = LengthSampler(output_min_length, output_max_length)\n",
"\n",
"\n",
"generation_kwargs = {\n",
" \"min_length\": -1,\n",
" \"top_k\": 0.0,\n",
" \"top_p\": 1.0,\n",
" \"do_sample\": True,\n",
" \"pad_token_id\": tokenizer.eos_token_id,\n",
"}\n",
"\n",
"\n",
"for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):\n",
" query_tensors = batch[\"input_ids\"]\n",
"\n",
" #### Get response from gpt2\n",
" response_tensors = []\n",
" for query in query_tensors:\n",
" gen_len = output_length_sampler()\n",
" generation_kwargs[\"max_new_tokens\"] = gen_len\n",
" response = ppo_trainer.generate(query, **generation_kwargs)\n",
" response_tensors.append(response.squeeze()[-gen_len:])\n",
" batch[\"response\"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]\n",
"\n",
" #### Compute sentiment score\n",
" texts = [q + r for q, r in zip(batch[\"query\"], batch[\"response\"])]\n",
" pipe_outputs = sentiment_pipe(texts, **sent_kwargs)\n",
" rewards = [torch.tensor(output[1][\"score\"]) for output in pipe_outputs]\n",
"\n",
" #### Run PPO step\n",
" stats = ppo_trainer.step(query_tensors, response_tensors, rewards)\n",
" ppo_trainer.log_stats(stats, batch, rewards)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Training progress\n",
"If you are tracking the training progress with Weights&Biases you should see a plot similar to the one below. Check out the interactive sample report on wandb.ai: [link](https://app.wandb.ai/huggingface/trl-showcase/runs/1jtvxb1m/).\n",
"\n",
"<div style=\"text-align: center\">\n",
"<img src='https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/gpt2_tuning_progress.png' width='800'>\n",
"<p style=\"text-align: center;\"> <b>Figure:</b> Reward mean and distribution evolution during training. </p>\n",
"</div>\n",
"\n",
"One can observe how the model starts to generate more positive outputs after a few optimisation steps.\n",
"\n",
"> Note: Investigating the KL-divergence will probably show that at this point the model has not converged to the target KL-divergence, yet. To get there would require longer training or starting with a higher initial coefficient."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model inspection\n",
"Let's inspect some examples from the IMDB dataset. We can use `model_ref` to compare the tuned model `model` against the model before optimisation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#### get a batch from the dataset\n",
"bs = 16\n",
"game_data = dict()\n",
"dataset.set_format(\"pandas\")\n",
"df_batch = dataset[:].sample(bs)\n",
"game_data[\"query\"] = df_batch[\"query\"].tolist()\n",
"query_tensors = df_batch[\"input_ids\"].tolist()\n",
"\n",
"response_tensors_ref, response_tensors = [], []\n",
"\n",
"#### get response from gpt2 and gpt2_ref\n",
"for i in range(bs):\n",
" gen_len = output_length_sampler()\n",
" output = ref_model.generate(\n",
" torch.tensor(query_tensors[i]).unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()[-gen_len:]\n",
" response_tensors_ref.append(output)\n",
" output = model.generate(\n",
" torch.tensor(query_tensors[i]).unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()[-gen_len:]\n",
" response_tensors.append(output)\n",
"\n",
"#### decode responses\n",
"game_data[\"response (before)\"] = [tokenizer.decode(response_tensors_ref[i]) for i in range(bs)]\n",
"game_data[\"response (after)\"] = [tokenizer.decode(response_tensors[i]) for i in range(bs)]\n",
"\n",
"#### sentiment analysis of query/response pairs before/after\n",
"texts = [q + r for q, r in zip(game_data[\"query\"], game_data[\"response (before)\"])]\n",
"game_data[\"rewards (before)\"] = [output[1][\"score\"] for output in sentiment_pipe(texts, **sent_kwargs)]\n",
"\n",
"texts = [q + r for q, r in zip(game_data[\"query\"], game_data[\"response (after)\"])]\n",
"game_data[\"rewards (after)\"] = [output[1][\"score\"] for output in sentiment_pipe(texts, **sent_kwargs)]\n",
"\n",
"# store results in a dataframe\n",
"df_results = pd.DataFrame(game_data)\n",
"df_results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking at the reward mean/median of the generated sequences we observe a significant difference."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"mean:\")\n",
"display(df_results[[\"rewards (before)\", \"rewards (after)\"]].mean())\n",
"print()\n",
"print(\"median:\")\n",
"display(df_results[[\"rewards (before)\", \"rewards (after)\"]].median())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Save model\n",
"Finally, we save the model and push it to the Hugging Face for later usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.save_pretrained(\"gpt2-imdb-pos-v2\", push_to_hub=True)\n",
"tokenizer.save_pretrained(\"gpt2-imdb-pos-v2\", push_to_hub=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"vscode": {
"interpreter": {
"hash": "4c8ff454cd947027f86954d72bf940c689a97dcc494eb53cfe4813862c6065fe"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|