File size: 11,976 Bytes
59e40e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""
Source url: https://github.com/lukemelas/EfficientNet-PyTorch
Modified by Min Seok Lee, Wooseok Shin, Nikita Selin
License: Apache License 2.0
Changes:
    - Added support for extracting edge features
    - Added support for extracting object features at different levels
    - Refactored the code
"""
from typing import Any, List

import torch
from torch import nn
from torch.nn import functional as F

from carvekit.ml.arch.tracerb7.effi_utils import (
    get_same_padding_conv2d,
    calculate_output_image_size,
    MemoryEfficientSwish,
    drop_connect,
    round_filters,
    round_repeats,
    Swish,
    create_block_args,
)


class MBConvBlock(nn.Module):
    """Mobile Inverted Residual Bottleneck Block.

    Args:
        block_args (namedtuple): BlockArgs, defined in utils.py.
        global_params (namedtuple): GlobalParam, defined in utils.py.
        image_size (tuple or list): [image_height, image_width].

    References:
        [1] https://arxiv.org/abs/1704.04861 (MobileNet v1)
        [2] https://arxiv.org/abs/1801.04381 (MobileNet v2)
        [3] https://arxiv.org/abs/1905.02244 (MobileNet v3)
    """

    def __init__(self, block_args, global_params, image_size=None):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = (
            1 - global_params.batch_norm_momentum
        )  # pytorch's difference from tensorflow
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (
            0 < self._block_args.se_ratio <= 1
        )
        self.id_skip = (
            block_args.id_skip
        )  # whether to use skip connection and drop connect

        # Expansion phase (Inverted Bottleneck)
        inp = self._block_args.input_filters  # number of input channels
        oup = (
            self._block_args.input_filters * self._block_args.expand_ratio
        )  # number of output channels
        if self._block_args.expand_ratio != 1:
            Conv2d = get_same_padding_conv2d(image_size=image_size)
            self._expand_conv = Conv2d(
                in_channels=inp, out_channels=oup, kernel_size=1, bias=False
            )
            self._bn0 = nn.BatchNorm2d(
                num_features=oup, momentum=self._bn_mom, eps=self._bn_eps
            )
            # image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._depthwise_conv = Conv2d(
            in_channels=oup,
            out_channels=oup,
            groups=oup,  # groups makes it depthwise
            kernel_size=k,
            stride=s,
            bias=False,
        )
        self._bn1 = nn.BatchNorm2d(
            num_features=oup, momentum=self._bn_mom, eps=self._bn_eps
        )
        image_size = calculate_output_image_size(image_size, s)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            Conv2d = get_same_padding_conv2d(image_size=(1, 1))
            num_squeezed_channels = max(
                1, int(self._block_args.input_filters * self._block_args.se_ratio)
            )
            self._se_reduce = Conv2d(
                in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1
            )
            self._se_expand = Conv2d(
                in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1
            )

        # Pointwise convolution phase
        final_oup = self._block_args.output_filters
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._project_conv = Conv2d(
            in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False
        )
        self._bn2 = nn.BatchNorm2d(
            num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps
        )
        self._swish = MemoryEfficientSwish()

    def forward(self, inputs, drop_connect_rate=None):
        """MBConvBlock's forward function.

        Args:
            inputs (tensor): Input tensor.
            drop_connect_rate (bool): Drop connect rate (float, between 0 and 1).

        Returns:
            Output of this block after processing.
        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._block_args.expand_ratio != 1:
            x = self._expand_conv(inputs)
            x = self._bn0(x)
            x = self._swish(x)

        x = self._depthwise_conv(x)
        x = self._bn1(x)
        x = self._swish(x)

        # Squeeze and Excitation
        if self.has_se:
            x_squeezed = F.adaptive_avg_pool2d(x, 1)
            x_squeezed = self._se_reduce(x_squeezed)
            x_squeezed = self._swish(x_squeezed)
            x_squeezed = self._se_expand(x_squeezed)
            x = torch.sigmoid(x_squeezed) * x

        # Pointwise Convolution
        x = self._project_conv(x)
        x = self._bn2(x)

        # Skip connection and drop connect
        input_filters, output_filters = (
            self._block_args.input_filters,
            self._block_args.output_filters,
        )
        if (
            self.id_skip
            and self._block_args.stride == 1
            and input_filters == output_filters
        ):
            # The combination of skip connection and drop connect brings about stochastic depth.
            if drop_connect_rate:
                x = drop_connect(x, p=drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).

        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.
        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()


class EfficientNet(nn.Module):
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), "blocks_args should be a list"
        assert len(blocks_args) > 0, "block args must be greater than 0"
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Get stem static or dynamic convolution depending on image size
        image_size = global_params.image_size
        Conv2d = get_same_padding_conv2d(image_size=image_size)

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(
            32, self._global_params
        )  # number of output channels
        self._conv_stem = Conv2d(
            in_channels, out_channels, kernel_size=3, stride=2, bias=False
        )
        self._bn0 = nn.BatchNorm2d(
            num_features=out_channels, momentum=bn_mom, eps=bn_eps
        )
        image_size = calculate_output_image_size(image_size, 2)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(
                    block_args.input_filters, self._global_params
                ),
                output_filters=round_filters(
                    block_args.output_filters, self._global_params
                ),
                num_repeat=round_repeats(block_args.num_repeat, self._global_params),
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(
                MBConvBlock(block_args, self._global_params, image_size=image_size)
            )
            image_size = calculate_output_image_size(image_size, block_args.stride)
            if block_args.num_repeat > 1:  # modify block_args to keep same output size
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1
                )
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(
                    MBConvBlock(block_args, self._global_params, image_size=image_size)
                )
                # image_size = calculate_output_image_size(image_size, block_args.stride)  # stride = 1

        self._swish = MemoryEfficientSwish()

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).

        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.

        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
        for block in self._blocks:
            block.set_swish(memory_efficient)

    def extract_endpoints(self, inputs):
        endpoints = dict()

        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))
        prev_x = x

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(
                    self._blocks
                )  # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)
            if prev_x.size(2) > x.size(2):
                endpoints["reduction_{}".format(len(endpoints) + 1)] = prev_x
            prev_x = x

        # Head
        x = self._swish(self._bn1(self._conv_head(x)))
        endpoints["reduction_{}".format(len(endpoints) + 1)] = x

        return endpoints

    def _change_in_channels(self, in_channels):
        """Adjust model's first convolution layer to in_channels, if in_channels not equals 3.

        Args:
            in_channels (int): Input data's channel number.
        """
        if in_channels != 3:
            Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size)
            out_channels = round_filters(32, self._global_params)
            self._conv_stem = Conv2d(
                in_channels, out_channels, kernel_size=3, stride=2, bias=False
            )


class EfficientEncoderB7(EfficientNet):
    def __init__(self):
        super().__init__(
            *create_block_args(
                width_coefficient=2.0,
                depth_coefficient=3.1,
                dropout_rate=0.5,
                image_size=600,
            )
        )
        self._change_in_channels(3)
        self.block_idx = [10, 17, 37, 54]
        self.channels = [48, 80, 224, 640]

    def initial_conv(self, inputs):
        x = self._swish(self._bn0(self._conv_stem(inputs)))
        return x

    def get_blocks(self, x, H, W, block_idx):
        features = []
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(
                    self._blocks
                )  # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)
            if idx == block_idx[0]:
                features.append(x.clone())
            if idx == block_idx[1]:
                features.append(x.clone())
            if idx == block_idx[2]:
                features.append(x.clone())
            if idx == block_idx[3]:
                features.append(x.clone())

        return features

    def forward(self, inputs: torch.Tensor) -> List[Any]:
        B, C, H, W = inputs.size()
        x = self.initial_conv(inputs)  # Prepare input for the backbone
        return self.get_blocks(
            x, H, W, block_idx=self.block_idx
        )  # Get backbone features and edge maps