File size: 4,388 Bytes
0fc5095
bfc11d5
0fc5095
 
 
 
 
 
 
 
 
 
 
 
 
0375f07
 
 
 
 
 
 
 
 
 
 
 
0fc5095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0375f07
0fc5095
 
0375f07
0fc5095
bfc11d5
0fc5095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fead8f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from typing import Optional
import spaces

import gradio as gr
import numpy as np
import torch
from PIL import Image
import io


import base64, os
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
import torch
from PIL import Image

# yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
# caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")

from ultralytics import YOLO
yolo_model = YOLO('weights/icon_detect/best.pt').to('cuda')
from transformers import AutoProcessor, AutoModelForCausalLM 
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("weights/icon_caption_florence", torch_dtype=torch.float16, trust_remote_code=True).to('cuda')
caption_model_processor = {'processor': processor, 'model': model}
print('finish loading model!!!')


platform = 'pc'
if platform == 'pc':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 2,
        'thickness': 2,
    }
elif platform == 'web':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 3,
        'thickness': 3,
    }
elif platform == 'mobile':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 3,
        'thickness': 3,
    }



MARKDOWN = """
# OmniParser for Pure Vision Based General GUI Agent 🔥
<div>
    <a href="https://arxiv.org/pdf/2408.00203">
        <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
    </a>
</div>

OmniParser is a screen parsing tool to convert general GUI screen to structured elements. 
"""

# DEVICE = torch.device('cuda')

# @spaces.GPU
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
@spaces.GPU(duration=65)
def process(
    image_input,
    box_threshold,
    iou_threshold
) -> Optional[Image.Image]:

    image_save_path = 'imgs/saved_image_demo.png'
    image_input.save(image_save_path)
    # import pdb; pdb.set_trace()

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
    text, ocr_bbox = ocr_bbox_rslt
    # print('prompt:', prompt)
    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold)
    image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
    print('finish processing')
    parsed_content_list = '\n'.join(parsed_content_list)
    return image, str(parsed_content_list)



with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(
                type='pil', label='Upload image')
            # set the threshold for removing the bounding boxes with low confidence, default is 0.05
            box_threshold_component = gr.Slider(
                label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
            # set the threshold for removing the bounding boxes with large overlap, default is 0.1
            iou_threshold_component = gr.Slider(
                label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
            submit_button_component = gr.Button(
                value='Submit', variant='primary')
        with gr.Column():
            image_output_component = gr.Image(type='pil', label='Image Output')
            text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')

    submit_button_component.click(
        fn=process,
        inputs=[
            image_input_component,
            box_threshold_component,
            iou_threshold_component
        ],
        outputs=[image_output_component, text_output_component]
    )

# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False)