Spaces:
Paused
Paused
File size: 5,399 Bytes
2e1d4b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import io
import pandas as pd
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import hashlib
import pypdfium2
from texify.inference import batch_inference
from texify.model.model import load_model
from texify.model.processor import load_processor
from texify.settings import settings
import subprocess
import re
from PIL import Image
MAX_WIDTH = 1000
def replace_katex_invalid(string):
# KaTeX cannot render all LaTeX, so we need to replace some things
string = re.sub(r'\\tag\{.*?\}', '', string)
string = re.sub(r'\\Big\{(.*?)\}|\\big\{(.*?)\}', r'\1\2', string)
return string
@st.cache_resource()
def load_model_cached():
return load_model()
@st.cache_resource()
def load_processor_cached():
return load_processor()
@st.cache_data()
def infer_image(pil_image, bbox, temperature):
input_img = pil_image.crop(bbox)
model_output = batch_inference([input_img], model, processor, temperature=temperature)
return model_output[0]
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=96):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def get_uploaded_image(in_file):
return Image.open(in_file).convert("RGB")
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
def get_canvas_hash(pil_image):
return hashlib.md5(pil_image.tobytes()).hexdigest()
@st.cache_data()
def get_image_size(pil_image):
if pil_image is None:
return 800, 600
height, width = pil_image.height, pil_image.width
if width > MAX_WIDTH:
scale = MAX_WIDTH / width
height = int(height * scale)
width = MAX_WIDTH
return height, width
st.set_page_config(layout="wide")
top_message = """### Texify
After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right.
If you have already cropped your image, select "OCR image" in the sidebar instead.
"""
st.markdown(top_message)
col1, col2 = st.columns([.7, .3])
model = load_model_cached()
processor = load_processor_cached()
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = get_uploaded_image(in_file)
whole_image = st.sidebar.button("OCR image")
temperature = st.sidebar.slider("Generation temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05)
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas"
with col1:
# Create a canvas component
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.1)", # Fixed fill color with some opacity
stroke_width=1,
stroke_color="#FFAA00",
background_color="#FFF",
background_image=pil_image,
update_streamlit=True,
height=get_image_size(pil_image)[0],
width=get_image_size(pil_image)[1],
drawing_mode="rect",
point_display_radius=0,
key=canvas_hash,
)
if canvas_result.json_data is not None or whole_image:
objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
bbox_list = None
if objects.shape[0] > 0:
boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]]
boxes["right"] = boxes["left"] + boxes["width"]
boxes["bottom"] = boxes["top"] + boxes["height"]
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist()
if whole_image:
bbox_list = [(0, 0, pil_image.width, pil_image.height)]
if bbox_list:
with col2:
inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list]
for idx, inference in enumerate(reversed(inferences)):
st.markdown(f"### {len(inferences) - idx}")
katex_markdown = replace_katex_invalid(inference)
st.markdown(katex_markdown)
st.code(inference)
st.divider()
with col2:
tips = """
### Usage tips
- Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info.
- Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple.
- You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is.
- Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere.
"""
st.markdown(tips) |