File size: 4,447 Bytes
8347fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b26c1
8347fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09663bb
8347fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr
import spaces

title = """# 🙋🏻‍♂️Welcome to 🌟Tonic's Defog 🌬️🌁🌫️SqlCoder-34B-Alpha 
You can use this Space to test out the current model [defog/sqlcoder-34b-alpha](https://huggingface.co/defog/sqlcoder-34b-alpha). [defog/sqlcoder-34b-alpha](https://huggingface.co/defog/sqlcoder-34b-alpha) is a 34B parameter model that outperforms gpt-4 and gpt-4-turbo for natural language to SQL generation tasks on our sql-eval framework, and significantly outperforms all popular open-source models. SQLCoder-34B is fine-tuned on a base CodeLlama model.
You can also use 👨🏻‍⚕️❤️‍🩹🧑🏻‍⚕️Meditron by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/Meditron70B-AWQ?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻[![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

class SQLQueryGenerator:
    def __init__(self, model_name, prompt_file="prompt.md", metadata_file="metadata.sql"):
        self.tokenizer, self.model = self.get_tokenizer_model(model_name)
        self.prompt_file = prompt_file
        self.metadata_file = metadata_file
    
    def get_tokenizer_model(self, model_name):
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            trust_remote_code=True,
            torch_dtype=torch.float16,
            device_map="auto",
            use_cache=True,
        )
        return tokenizer, model

    def generate_prompt(self, question):
        with open(self.prompt_file, "r") as f:
            prompt = f.read()

        with open(self.metadata_file, "r") as f:
            table_metadata_string = f.read()

        prompt = prompt.format(
            user_question=question, table_metadata_string=table_metadata_string
        )
        return prompt

    def run_inference(self, question):
        prompt = self.generate_prompt(question)
        eos_token_id = self.tokenizer.eos_token_id
        pipe = pipeline(
            "text-generation",
            model=self.model,
            tokenizer=self.tokenizer,
            max_new_tokens=300,
            do_sample=False,
            num_beams=5,
        )
        generated_query = (
            pipe(
                prompt,
                num_return_sequences=1,
                eos_token_id=eos_token_id,
                pad_token_id=eos_token_id,
            )[0]["generated_text"]
            .split("```sql")[-1]
            .split("```")[0]
            .split(";")[0]
            .strip()
            + ";"
        )
        return generated_query

def main():
    model_name = "defog/sqlcoder-34b-alpha"
    sql_query_generator = SQLQueryGenerator(model_name)

    @spaces.GPU
    def generate_sql(question):
        return sql_query_generator.run_inference(question)

    with gr.Blocks() as demo:
        gr.Markdown(title)
        question = gr.Textbox(label="Enter your question")
        submit = gr.Button("Generate SQL Query")
        output = gr.Textbox(label="🌬️🌁🌫️SqlCoder-34B-alpha")
        submit.click(fn=generate_sql, inputs=question, outputs=output)

    demo.launch()

if __name__ == "__main__":
    main()