File size: 19,698 Bytes
e7ece9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "6300c7d8-d6c8-4178-94c5-4ee767cfd825",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Defaulting to user installation because normal site-packages is not writeable\n",
      "Collecting tonic-validate\n",
      "  Downloading tonic_validate-2.1.1-py3-none-any.whl (14 kB)\n",
      "Requirement already satisfied: openai>=1.0.0 in /home/mn/.local/lib/python3.10/site-packages (from tonic-validate) (1.4.0)\n",
      "Requirement already satisfied: pandas>=1.2.3 in /home/mn/.local/lib/python3.10/site-packages (from tonic-validate) (2.1.4)\n",
      "Requirement already satisfied: sniffio in /home/mn/.local/lib/python3.10/site-packages (from openai>=1.0.0->tonic-validate) (1.3.0)\n",
      "Requirement already satisfied: tqdm>4 in /home/mn/.local/lib/python3.10/site-packages (from openai>=1.0.0->tonic-validate) (4.66.1)\n",
      "Requirement already satisfied: typing-extensions<5,>=4.5 in /home/mn/.local/lib/python3.10/site-packages (from openai>=1.0.0->tonic-validate) (4.8.0)\n",
      "Requirement already satisfied: distro<2,>=1.7.0 in /usr/lib/python3/dist-packages (from openai>=1.0.0->tonic-validate) (1.7.0)\n",
      "Requirement already satisfied: pydantic<3,>=1.9.0 in /home/mn/.local/lib/python3.10/site-packages (from openai>=1.0.0->tonic-validate) (2.5.2)\n",
      "Requirement already satisfied: httpx<1,>=0.23.0 in /home/mn/.local/lib/python3.10/site-packages (from openai>=1.0.0->tonic-validate) (0.25.2)\n",
      "Requirement already satisfied: anyio<5,>=3.5.0 in /home/mn/.local/lib/python3.10/site-packages (from openai>=1.0.0->tonic-validate) (3.7.1)\n",
      "Requirement already satisfied: tzdata>=2022.1 in /home/mn/.local/lib/python3.10/site-packages (from pandas>=1.2.3->tonic-validate) (2023.3)\n",
      "Requirement already satisfied: pytz>=2020.1 in /usr/lib/python3/dist-packages (from pandas>=1.2.3->tonic-validate) (2022.1)\n",
      "Requirement already satisfied: numpy<2,>=1.22.4 in /home/mn/.local/lib/python3.10/site-packages (from pandas>=1.2.3->tonic-validate) (1.26.2)\n",
      "Requirement already satisfied: python-dateutil>=2.8.2 in /home/mn/.local/lib/python3.10/site-packages (from pandas>=1.2.3->tonic-validate) (2.8.2)\n",
      "Requirement already satisfied: idna>=2.8 in /usr/lib/python3/dist-packages (from anyio<5,>=3.5.0->openai>=1.0.0->tonic-validate) (3.3)\n",
      "Requirement already satisfied: exceptiongroup in /home/mn/.local/lib/python3.10/site-packages (from anyio<5,>=3.5.0->openai>=1.0.0->tonic-validate) (1.2.0)\n",
      "Requirement already satisfied: httpcore==1.* in /home/mn/.local/lib/python3.10/site-packages (from httpx<1,>=0.23.0->openai>=1.0.0->tonic-validate) (1.0.2)\n",
      "Requirement already satisfied: certifi in /usr/lib/python3/dist-packages (from httpx<1,>=0.23.0->openai>=1.0.0->tonic-validate) (2020.6.20)\n",
      "Requirement already satisfied: h11<0.15,>=0.13 in /home/mn/.local/lib/python3.10/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai>=1.0.0->tonic-validate) (0.14.0)\n",
      "Requirement already satisfied: annotated-types>=0.4.0 in /home/mn/.local/lib/python3.10/site-packages (from pydantic<3,>=1.9.0->openai>=1.0.0->tonic-validate) (0.6.0)\n",
      "Requirement already satisfied: pydantic-core==2.14.5 in /home/mn/.local/lib/python3.10/site-packages (from pydantic<3,>=1.9.0->openai>=1.0.0->tonic-validate) (2.14.5)\n",
      "Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.8.2->pandas>=1.2.3->tonic-validate) (1.16.0)\n",
      "Installing collected packages: tonic-validate\n",
      "Successfully installed tonic-validate-2.1.1\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "pip install tonic-validate"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "31b2d0ec-def3-4df9-9ab6-ba46810590a2",
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "5acf03c7-9e4b-421d-a808-a97ab3da4ed7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from langchain.document_loaders import TextLoader\n",
    "from langchain.vectorstores import Chroma\n",
    "import os\n",
    "from langchain.document_loaders import DirectoryLoader\n",
    "from dotenv import load_dotenv\n",
    "from langchain.llms import OpenAI\n",
    "import json\n",
    "from langchain.embeddings.openai import OpenAIEmbeddings\n",
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.chains import RetrievalQA\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "7f23e6c0-0c41-4437-a8ec-ee09e1805e3a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "page_content='According to a study from the University of Cambridge, at least half of developers’ efforts are spent debugging and not actively programming, which costs the software industry an estimated $312 billion per year. But so far, only a handful of code-generating AI systems have been made freely available to the public — reflecting the commercial incentives of the organizations building them (see: Replit).\\n\\nStarCoder, which by contrast is licensed to allow for royalty-free use by anyone, including corporations, was trained on over 80 programming languages as well as text from GitHub repositories, including documentation and programming notebooks. StarCoder integrates with Microsoft’s Visual Studio Code code editor and, like OpenAI’s ChatGPT, can follow basic instructions (e.g., “create an app UI”) and answer questions about code.' metadata={'source': 'new_articles/05-04-hugging-face-and-servicenow-release-a-free-code-generating-model.txt'}\n"
     ]
    }
   ],
   "source": [
    "#text splitting\n",
    "loader = DirectoryLoader('./new_articles/', glob=\"./*.txt\", loader_cls=TextLoader)\n",
    "documents = loader.load()\n",
    "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
    "texts = text_splitter.split_documents(documents)\n",
    "print(texts[1]) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "6bcbef63-0c39-4236-bb27-87e11dbee5ff",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#load env variables(keys}\n",
    "load_dotenv()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "84d648f5-c84a-40b6-9765-9f04d615906d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from openai import OpenAI\n",
    "OPENAI_API_KEY= os.getenv(\"OPENAI_API_KEY\")\n",
    "# embeddings = OpenAIEmbeddings(openai_api_key=openai.api_key)\n",
    "embedding_function = OpenAIEmbeddings(\n",
    "api_key=OPENAI_API_KEY)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "1b08991b-6190-41c2-883c-05360d7e4682",
   "metadata": {},
   "outputs": [],
   "source": [
    "vectordb = Chroma.from_documents(documents=texts, \n",
    "                                 embedding=OpenAIEmbeddings())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "1a845b21-278a-499e-bddc-735577960e2c",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0.8)\n",
    "chain = RetrievalQA.from_chain_type(llm=llm,\n",
    "                                    chain_type=\"stuff\",\n",
    "                                    retriever=vectordb.as_retriever())\n",
    "from langchain.chains.question_answering import load_qa_chain\n",
    "chain = load_qa_chain(llm, chain_type=\"stuff\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "89166788-2e9f-48ab-8d17-7dd353b0ff52",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Load 10 questions and answers about the Paul Graham essays as a benchmark for how the RAG system should answer questions.\n",
    "with open(\"question_and_answer_list.json\", \"r\") as f:\n",
    "    question_and_answer_list =json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "238595b9-be93-4b8b-9de6-88f042fb3596",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'What is ChatGPT, and how has it been used in various applications?'"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ex_q_and_a = question_and_answer_list[1]\n",
    "ex_q_and_a[\"question\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "8baa0b92-5816-4746-9928-2324ca9e2962",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'ChatGPT is a text-generating AI chatbot developed by OpenAI. It has been widely used for writing essays, code, and more based on short text prompts, enhancing productivity. Major brands have experimented with it for generating ad and marketing copy. OpenAI continually invests in ChatGPT, upgrading it to GPT-4, a more advanced language-writing model. The chatbot has been integrated into various applications, including search engines, customer service, and even an iPhone customization app called SuperChat.'"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ex_q_and_a[\"answer\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "d545ac1d-cd2f-4704-86f7-da1af5ecc8f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tonic_validate import ValidateApi, ValidateScorer, Benchmark, LLMResponse\n",
    "from tonic_validate.metrics import AnswerConsistencyMetric, AugmentationAccuracyMetric"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "6d2c0ecc-bb57-488a-965f-1ea1bff1137b",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tonic_validate.validate_scorer import ValidateScorer \n",
    "# metrics\n",
    "from tonic_validate.metrics.answer_consistency_metric import AnswerConsistencyMetric\n",
    "from tonic_validate.metrics.answer_similarity_metric import AnswerSimilarityMetric\n",
    "from tonic_validate.metrics.augmentation_accuracy_metric import AugmentationAccuracyMetric\n",
    "from tonic_validate.metrics.augmentation_precision_metric import AugmentationPrecisionMetric\n",
    "from tonic_validate.metrics.retrieval_precision_metric import RetrievalPrecisionMetric\n",
    "# llm utils\n",
    "from tonic_validate.classes.llm_response import LLMResponse\n",
    "from tonic_validate.classes.benchmark import BenchmarkItem"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "118570f4-e116-4462-a6fd-01cf4fb0ed4a",
   "metadata": {},
   "outputs": [],
   "source": [
    "metrics = [\n",
    "    AnswerSimilarityMetric(),\n",
    "    RetrievalPrecisionMetric(),\n",
    "    AugmentationAccuracyMetric(),\n",
    "    AugmentationPrecisionMetric(),\n",
    "    AnswerConsistencyMetric()\n",
    "]\n",
    "# can use an OpenAI chat completion model\n",
    "# llm_evaluator = \"gpt-3.5-turbo\"\n",
    "llm_evaluator = \"gpt-4-1106-preview\"\n",
    "validate_scorer = ValidateScorer(\n",
    "    metrics, llm_evaluator\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "21c86d7f-de97-4fc2-801a-3a963825f88e",
   "metadata": {},
   "source": [
    "For one benchMark"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "de465c2e-b0f4-453d-82f9-d5017f8b300f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# example BenchmarkItem\n",
    "question = ex_q_and_a[\"question\"]\n",
    "reference_answer = ex_q_and_a[\"answer\"]\n",
    "benchmark_item = BenchmarkItem(\n",
    "    question=question,\n",
    "    answer=reference_answer\n",
    ")\n",
    "\n",
    "# example LLMResponse\n",
    "llm_answer = response\n",
    "context_list = [document.page_content for document in matching_docs]\n",
    "llm_response = LLMResponse(\n",
    "    llm_answer=llm_answer,\n",
    "    llm_context_list=context_list,\n",
    "    benchmark_item=benchmark_item\n",
    ")\n",
    "\n",
    "responses = [llm_response]\n",
    "\n",
    "response_scores = validate_scorer.score_run(responses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "094656b2-01e6-497f-b132-e46e7068fa0c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'answer_similarity': 4.0,\n",
       " 'retrieval_precision': 1.0,\n",
       " 'augmentation_accuracy': 0.5,\n",
       " 'augmentation_precision': 0.5,\n",
       " 'answer_consistency': 1.0}"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "response_scores.run_data[0].scores"
   ]
  },
  {
   "cell_type": "raw",
   "id": "2b4ee7b4-a1ca-4b1d-9e2a-7491105d0349",
   "metadata": {},
   "source": [
    "For Multiple BenchMarks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "e27f4bd2-aef0-45ed-b239-9a587521ca90",
   "metadata": {},
   "outputs": [],
   "source": [
    "# responses = []\n",
    "\n",
    "# for q_and_a in question_and_answer_list:\n",
    "#     query = ex_q_and_a[\"question\"]\n",
    "#     matching_docs =vectordb.similarity_search(query)\n",
    "#     response=chain.run(input_documents=matching_docs, question=query)\n",
    "    \n",
    "#     benchmark_item = BenchmarkItem(\n",
    "#         question=q_and_a[\"question\"],\n",
    "#         answer=q_and_a[\"answer\"]\n",
    "#     )\n",
    "\n",
    "#     llm_response = LLMResponse(\n",
    "#         llm_answer=response,\n",
    "#         llm_context_list=[document.page_content for document in matching_docs],\n",
    "#         benchmark_item=benchmark_item\n",
    "#     )\n",
    "\n",
    "#     responses.append(llm_response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "f4bdd2ac-630d-4313-975b-8220fc69fea6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# response_scores = validate_scorer.score_run(responses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "7bd5591a-faf9-47ec-82bb-9bbe694a3029",
   "metadata": {},
   "outputs": [],
   "source": [
    "validate_api = ValidateApi(\"lYNVCKKhUtssnDKSQGX48HkK4Mr_62dr9Hj7U0_K98c\")\n",
    "validate_api.upload_run(\"944f02fe-c106-45c0-af5d-74e4bd0518b7\", response_scores)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "6147a691-a919-4a4f-9ba7-00ed3c0efb88",
   "metadata": {},
   "outputs": [],
   "source": [
    "# def make_scores_df(response_scores):\n",
    "#     scores_df = {\n",
    "#         \"question\": [],\n",
    "#         \"reference_answer\": [],\n",
    "#         \"llm_answer\": [],\n",
    "#         \"retrieved_context\": []\n",
    "#     }\n",
    "#     for score_name in response_scores.overall_scores:\n",
    "#         scores_df[score_name] = []\n",
    "#     for data in response_scores.run_data:\n",
    "#         scores_df[\"question\"].append(data.reference_question)\n",
    "#         scores_df[\"reference_answer\"].append(data.reference_answer)\n",
    "#         scores_df[\"llm_answer\"].append(data.llm_answer)\n",
    "#         scores_df[\"retrieved_context\"].append(data.llm_context)\n",
    "#         for score_name, score in data.scores.items():\n",
    "#             scores_df[score_name].append(score)\n",
    "#     return pd.DataFrame(scores_df)\n",
    "            \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "d94ac537-38d6-401d-b9bb-55a7f1c5598b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# scores_df = make_scores_df(response_scores)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "a8179a51-6d77-4599-9b30-4553faf29d2d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>question</th>\n",
       "      <th>reference_answer</th>\n",
       "      <th>llm_answer</th>\n",
       "      <th>retrieved_context</th>\n",
       "      <th>answer_similarity</th>\n",
       "      <th>retrieval_precision</th>\n",
       "      <th>augmentation_accuracy</th>\n",
       "      <th>augmentation_precision</th>\n",
       "      <th>answer_consistency</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>What does Pando plan to use the $30 million ra...</td>\n",
       "      <td>Pando intends to use the funds for expanding i...</td>\n",
       "      <td>Pando plans to use the $30 million raised in i...</td>\n",
       "      <td>[Signaling that investments in the supply chai...</td>\n",
       "      <td>4.0</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.25</td>\n",
       "      <td>0.5</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                            question  \\\n",
       "0  What does Pando plan to use the $30 million ra...   \n",
       "\n",
       "                                    reference_answer  \\\n",
       "0  Pando intends to use the funds for expanding i...   \n",
       "\n",
       "                                          llm_answer  \\\n",
       "0  Pando plans to use the $30 million raised in i...   \n",
       "\n",
       "                                   retrieved_context  answer_similarity  \\\n",
       "0  [Signaling that investments in the supply chai...                4.0   \n",
       "\n",
       "   retrieval_precision  augmentation_accuracy  augmentation_precision  \\\n",
       "0                  0.5                   0.25                     0.5   \n",
       "\n",
       "   answer_consistency  \n",
       "0                 1.0  "
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# scores_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3c1f4bce-d84e-4e9f-a422-c1d146eb1a32",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}