File size: 1,699 Bytes
e71614a
 
 
 
 
 
 
 
 
 
 
 
ebe3c16
e71614a
 
 
 
 
 
 
 
 
 
e91bcad
 
e71614a
 
e91bcad
ef36f99
e71614a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
from texify.inference import batch_inference
from texify.model.model import load_model
from texify.model.processor import load_processor
from PIL import Image

title="""🙋🏻‍♂️Welcome to🌟Tonic's👨🏻‍🔬Texify"""
description="""You can upload a picture with a math formula and this model will return latex formulas. Texify is a multimodal input model. You can use this Space to test out the current model [vikp/texify2](https://huggingface.co/vikp/texify2) You can also use  vikp/texify2🚀 by cloning this space.   Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/texify?duplicate=true)
Join us:  TeamTonic  is always making cool demos! Join our active builder's community on  Discord: [Discord](https://discord.gg/nXx5wbX9) On  Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On  Github: [Polytonic](https://github.com/tonic-ai) & contribute to   [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) You can also join the [texify community here](https://discord.gg/zJSDQJWDe8). Big thanks to Vik Paruchuri for the invite and Huggingface for the Community Grant. Your special attentions are much appreciated.
"""


model = load_model()
processor = load_processor()

def process_image(img):
    img = Image.fromarray(img)
    
    results = batch_inference([img], model, processor)

    return '\n'.join(results) if isinstance(results, list) else results

iface = gr.Interface(
    gr.Markdown(title),
    gr.Markdown(description),
    fn=process_image,
    inputs=gr.inputs.Image(type="pil"),
    outputs="text"
)

if __name__ == "__main__":
    iface.launch()