File size: 26,835 Bytes
6ef48c6 59993d0 4da89a8 d454433 6ef48c6 e90574b edda836 531d6f9 59993d0 e90574b 6ef48c6 4da89a8 9d978bc 4da89a8 e90574b 531d6f9 f2aca49 531d6f9 36a4f5e 6ef48c6 9d978bc 6ef48c6 9d978bc 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 36a4f5e 9d978bc 6ef48c6 59993d0 f4bd350 4da89a8 7de855a 6ef48c6 36a4f5e 9d978bc 6ef48c6 f2aca49 59993d0 7de855a 4da89a8 6ef48c6 9d978bc 36a4f5e 9d978bc 36a4f5e 6ef48c6 4da89a8 6ef48c6 59993d0 7de855a 6ef48c6 9d978bc 36a4f5e 9d978bc 59993d0 7de855a 36a4f5e e90574b 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 e90574b 9d978bc 6ef48c6 907eee3 6ef48c6 f2aca49 6ef48c6 4424462 36a4f5e 4424462 9d978bc 36a4f5e 4424462 36a4f5e 4424462 36a4f5e 6ef48c6 59993d0 7de855a 9d978bc 6ef48c6 9d978bc e90574b f2aca49 f4bd350 59993d0 7de855a f4bd350 6ef48c6 59993d0 6ef48c6 4da89a8 6ef48c6 d454433 1d115f5 59993d0 f4bd350 59993d0 9d978bc 59993d0 9d978bc 36a4f5e 59993d0 4da89a8 4e72c55 59993d0 4da89a8 59993d0 4da89a8 59993d0 6ef48c6 59993d0 4da89a8 59993d0 4da89a8 59993d0 6ef48c6 4da89a8 59993d0 f4bd350 59993d0 f4bd350 59993d0 f4bd350 59993d0 b4fa9b6 6ef48c6 4da89a8 59993d0 4da89a8 6ef48c6 e90574b 59993d0 f4bd350 59993d0 b4fa9b6 4da89a8 85f4370 e90574b 6ef48c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
import os
import asyncio
import time
import json
from typing import Optional, List, Dict, Any
from datetime import datetime
import httpx
import trafilatura
import gradio as gr
from dateutil import parser as dateparser
from limits import parse
from limits.aio.storage import MemoryStorage
from limits.aio.strategies import MovingWindowRateLimiter
from analytics import record_request, last_n_days_df, last_n_days_avg_time_df
# Configuration
SERPER_API_KEY_ENV = os.getenv("SERPER_API_KEY")
SERPER_API_KEY_OVERRIDE: Optional[str] = None
SERPER_SEARCH_ENDPOINT = "https://google.serper.dev/search"
SERPER_NEWS_ENDPOINT = "https://google.serper.dev/news"
def _get_serper_api_key() -> Optional[str]:
"""Return the currently active Serper API key (override wins, else env)."""
return (SERPER_API_KEY_OVERRIDE or SERPER_API_KEY_ENV or None)
def _get_headers() -> Dict[str, str]:
api_key = _get_serper_api_key()
return {"X-API-KEY": api_key or "", "Content-Type": "application/json"}
# Rate limiting
storage = MemoryStorage()
limiter = MovingWindowRateLimiter(storage)
rate_limit = parse("360/hour")
async def search_web(
query: str, search_type: str = "search", num_results: Optional[int] = 4
) -> str:
"""
Search the web for information or fresh news, returning extracted content.
This tool can perform two types of searches:
- "search" (default): General web search for diverse, relevant content from various sources
- "news": Specifically searches for fresh news articles and breaking stories
Use "news" mode when looking for:
- Breaking news or very recent events
- Time-sensitive information
- Current affairs and latest developments
- Today's/this week's happenings
Use "search" mode (default) for:
- General information and research
- Technical documentation or guides
- Historical information
- Diverse perspectives from various sources
Args:
query (str): The search query. This is REQUIRED. Examples: "apple inc earnings",
"climate change 2024", "AI developments"
search_type (str): Type of search. This is OPTIONAL. Default is "search".
Options: "search" (general web search) or "news" (fresh news articles).
Use "news" for time-sensitive, breaking news content.
num_results (int): Number of results to fetch. This is OPTIONAL. Default is 4.
Range: 1-20. More results = more context but longer response time.
Returns:
str: Formatted text containing extracted content with metadata (title,
source, date, URL, and main text) for each result, separated by dividers.
Returns error message if API key is missing or search fails.
Examples:
- search_web("OpenAI GPT-5", "news") - Get 5 fresh news articles about OpenAI
- search_web("python tutorial", "search") - Get 4 general results about Python (default count)
- search_web("stock market today", "news", 10) - Get 10 news articles about today's market
- search_web("machine learning basics") - Get 4 general search results (all defaults)
"""
start_time = time.time()
if not _get_serper_api_key():
await record_request(None, num_results) # Record even failed requests
return "Error: SERPER_API_KEY environment variable is not set. Please set it to use this tool."
# Validate and constrain num_results
if num_results is None:
num_results = 4
num_results = max(1, min(20, num_results))
# Validate search_type
if search_type not in ["search", "news"]:
search_type = "search"
try:
# Check rate limit
if not await limiter.hit(rate_limit, "global"):
print(f"[{datetime.now().isoformat()}] Rate limit exceeded")
duration = time.time() - start_time
await record_request(duration, num_results)
return "Error: Rate limit exceeded. Please try again later (limit: 360 requests per hour)."
# Select endpoint based on search type
endpoint = (
SERPER_NEWS_ENDPOINT if search_type == "news" else SERPER_SEARCH_ENDPOINT
)
# Prepare payload
payload = {"q": query, "num": num_results}
if search_type == "news":
payload["type"] = "news"
payload["page"] = 1
async with httpx.AsyncClient(timeout=15) as client:
resp = await client.post(endpoint, headers=_get_headers(), json=payload)
if resp.status_code != 200:
duration = time.time() - start_time
await record_request(duration, num_results)
return f"Error: Search API returned status {resp.status_code}. Please check your API key and try again."
# Extract results based on search type
if search_type == "news":
results = resp.json().get("news", [])
else:
results = resp.json().get("organic", [])
if not results:
duration = time.time() - start_time
await record_request(duration, num_results)
return f"No {search_type} results found for query: '{query}'. Try a different search term or search type."
# Fetch HTML content concurrently
urls = [r["link"] for r in results]
async with httpx.AsyncClient(timeout=20, follow_redirects=True) as client:
tasks = [client.get(u) for u in urls]
responses = await asyncio.gather(*tasks, return_exceptions=True)
# Extract and format content
chunks = []
successful_extractions = 0
for meta, response in zip(results, responses):
if isinstance(response, Exception):
continue
# Extract main text content
body = trafilatura.extract(
response.text, include_formatting=True, include_comments=False
)
if not body:
continue
successful_extractions += 1
print(
f"[{datetime.now().isoformat()}] Successfully extracted content from {meta['link']}"
)
# Format the chunk based on search type
if search_type == "news":
# News results have date and source
try:
date_str = meta.get("date", "")
if date_str:
date_iso = dateparser.parse(date_str, fuzzy=True).strftime(
"%Y-%m-%d"
)
else:
date_iso = "Unknown"
except Exception:
date_iso = "Unknown"
chunk = (
f"## {meta['title']}\n"
f"**Source:** {meta.get('source', 'Unknown')} "
f"**Date:** {date_iso}\n"
f"**URL:** {meta['link']}\n\n"
f"{body.strip()}\n"
)
else:
# Search results don't have date/source but have domain
domain = meta["link"].split("/")[2].replace("www.", "")
chunk = (
f"## {meta['title']}\n"
f"**Domain:** {domain}\n"
f"**URL:** {meta['link']}\n\n"
f"{body.strip()}\n"
)
chunks.append(chunk)
if not chunks:
duration = time.time() - start_time
await record_request(duration, num_results)
return f"Found {len(results)} {search_type} results for '{query}', but couldn't extract readable content from any of them. The websites might be blocking automated access."
result = "\n---\n".join(chunks)
summary = f"Successfully extracted content from {successful_extractions} out of {len(results)} {search_type} results for query: '{query}'\n\n---\n\n"
print(
f"[{datetime.now().isoformat()}] Extraction complete: {successful_extractions}/{len(results)} successful for query '{query}'"
)
# Record successful request with duration
duration = time.time() - start_time
await record_request(duration, num_results)
return summary + result
except Exception as e:
# Record failed request with duration
duration = time.time() - start_time
return f"Error occurred while searching: {str(e)}. Please try again or check your query."
async def search_and_chunk(
query: str,
search_type: str,
num_results: Optional[int],
tokenizer_or_token_counter: str,
chunk_size: int,
chunk_overlap: int,
heading_level: int,
min_characters_per_chunk: int,
max_characters_per_section: int,
clean_text: bool,
) -> str:
"""
Complete flow: search -> fetch -> extract with trafilatura -> chunk with MarkdownChunker/Parser.
Returns a JSON string of a list[dict] where each dict is a chunk enriched with source metadata.
"""
start_time = time.time()
if not _get_serper_api_key():
await record_request(None, num_results)
return json.dumps([
{"error": "SERPER_API_KEY not set", "hint": "Set env or paste in the UI"}
])
# Normalize inputs
if num_results is None:
num_results = 4
num_results = max(1, min(20, int(num_results)))
if search_type not in ["search", "news"]:
search_type = "search"
try:
# Rate limit
if not await limiter.hit(rate_limit, "global"):
duration = time.time() - start_time
await record_request(duration, num_results)
return json.dumps([
{"error": "rate_limited", "limit": "360/hour"}
])
endpoint = (
SERPER_NEWS_ENDPOINT if search_type == "news" else SERPER_SEARCH_ENDPOINT
)
payload = {"q": query, "num": num_results}
if search_type == "news":
payload["type"] = "news"
payload["page"] = 1
async with httpx.AsyncClient(timeout=15) as client:
resp = await client.post(endpoint, headers=_get_headers(), json=payload)
if resp.status_code != 200:
duration = time.time() - start_time
await record_request(duration, num_results)
return json.dumps([
{"error": "bad_status", "status": resp.status_code}
])
results = resp.json().get("news" if search_type == "news" else "organic", [])
if not results:
duration = time.time() - start_time
await record_request(duration, num_results)
return json.dumps([])
# Fetch pages concurrently
urls = [r.get("link") for r in results]
async with httpx.AsyncClient(timeout=20, follow_redirects=True) as client:
responses = await asyncio.gather(*[client.get(u) for u in urls], return_exceptions=True)
all_chunks: List[Dict[str, Any]] = []
for meta, response in zip(results, responses):
if isinstance(response, Exception):
continue
extracted = trafilatura.extract(
response.text, include_formatting=True, include_comments=False
)
if not extracted:
continue
# Build a markdown doc with metadata header to help heading-aware chunking
if search_type == "news":
# Parse date if present
try:
date_str = meta.get("date", "")
date_iso = (
dateparser.parse(date_str, fuzzy=True).strftime("%Y-%m-%d") if date_str else "Unknown"
)
except Exception:
date_iso = "Unknown"
markdown_doc = (
f"# {meta.get('title', 'Untitled')}\n\n"
f"**Source:** {meta.get('source', 'Unknown')} **Date:** {date_iso}\n\n"
f"**URL:** {meta.get('link', '')}\n\n"
f"{extracted.strip()}\n"
)
else:
domain = (meta.get("link", "").split("/")[2].replace("www.", "") if meta.get("link") else "")
markdown_doc = (
f"# {meta.get('title', 'Untitled')}\n\n"
f"**Domain:** {domain}\n\n"
f"**URL:** {meta.get('link', '')}\n\n"
f"{extracted.strip()}\n"
)
# Run markdown chunker
chunks = _run_markdown_chunker(
markdown_doc,
tokenizer_or_token_counter=tokenizer_or_token_counter,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
heading_level=heading_level,
min_characters_per_chunk=min_characters_per_chunk,
max_characters_per_section=max_characters_per_section,
clean_text=clean_text,
)
# Enrich with metadata for traceability
for c in chunks:
c.setdefault("source_title", meta.get("title"))
c.setdefault("url", meta.get("link"))
if search_type == "news":
c.setdefault("source", meta.get("source"))
c.setdefault("date", meta.get("date"))
else:
c.setdefault("domain", domain)
all_chunks.append(c)
duration = time.time() - start_time
await record_request(duration, num_results)
return json.dumps(all_chunks, ensure_ascii=False)
except Exception as e:
duration = time.time() - start_time
await record_request(duration, num_results)
return json.dumps([{"error": str(e)}])
# Create Gradio interface
with gr.Blocks(title="Web Search MCP Server") as demo:
gr.HTML(
"""
<div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
<p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 500;">
π€ Community resource β please use responsibly to keep this service available for everyone
</p>
</div>
"""
)
gr.Markdown("# π Web Search MCP Server")
with gr.Tabs():
with gr.Tab("App"):
gr.Markdown(
"""
This MCP server provides web search capabilities to LLMs. It can perform general web searches
or specifically search for fresh news articles, extracting the main content from results.
**β‘ Speed-Focused:** Optimized to complete the entire search process - from query to
fully extracted web content - in under 2 seconds. Check out the Analytics tab
to see real-time performance metrics.
**Search Types:**
- **General Search**: Diverse results from various sources (blogs, docs, articles, etc.)
- **News Search**: Fresh news articles and breaking stories from news sources
**Note:** This interface is primarily designed for MCP tool usage by LLMs, but you can
also test it manually below.
"""
)
gr.HTML(
"""
<div style="margin-bottom: 24px;">
<a href="https://huggingface.co/spaces/victor/websearch?view=api">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/use-with-mcp-lg-dark.svg"
alt="Use with MCP"
style="height: 36px;">
</a>
</div>
""",
padding=0,
)
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(
label="Search Query",
placeholder='e.g. "OpenAI news", "climate change 2024", "AI developments"',
info="Required: Enter your search query",
)
with gr.Column(scale=1):
search_type_input = gr.Radio(
choices=["search", "news"],
value="search",
label="Search Type",
info="Choose search type",
)
with gr.Row():
with gr.Column(scale=3):
serper_key_input = gr.Textbox(
label="Serper API Key",
placeholder="Enter your Serper API key or set SERPER_API_KEY env var",
type="password",
)
with gr.Column(scale=1):
set_key_btn = gr.Button("Save API Key")
with gr.Accordion("Chunking Parameters", open=False):
with gr.Row():
num_results_input = gr.Slider(
minimum=1,
maximum=20,
value=4,
step=1,
label="Number of Results",
info="Results to fetch (1-20)",
)
chunk_size_input = gr.Slider(100, 4000, value=1000, step=50, label="Chunk Size (characters)")
heading_level_input = gr.Slider(1, 6, value=3, step=1, label="Max Heading Level")
with gr.Row():
min_chars_input = gr.Slider(0, 1000, value=50, step=10, label="Min characters per chunk")
max_chars_input = gr.Slider(500, 10000, value=4000, step=100, label="Max characters per section")
with gr.Row():
tokenizer_input = gr.Dropdown(choices=["character"], value="character", label="Tokenizer")
overlap_input = gr.Slider(0, 400, value=0, step=10, label="Chunk overlap (reserved)")
clean_text_input = gr.Checkbox(value=True, label="Clean text (strip inline markdown/URLs)")
search_button = gr.Button("Search + Chunk", variant="primary")
output = gr.Textbox(
label="Chunks (JSON List[Dict])",
lines=25,
max_lines=50,
info="Output is a JSON string list of chunk dicts",
)
# Add examples
gr.Examples(
examples=[
["OpenAI GPT-5 latest developments", "news", 5],
["React hooks useState", "search", 4],
["Tesla stock price today", "news", 6],
["Apple Vision Pro reviews", "search", 4],
["best Italian restaurants NYC", "search", 4],
],
inputs=[
query_input,
search_type_input,
num_results_input,
tokenizer_input,
chunk_size_input,
overlap_input,
heading_level_input,
min_chars_input,
max_chars_input,
clean_text_input,
],
outputs=output,
fn=search_and_chunk,
cache_examples=False,
)
def _set_serper_key(key: str) -> str:
global SERPER_API_KEY_OVERRIDE
SERPER_API_KEY_OVERRIDE = (key or "").strip() or None
# Minimal validation/echo without exposing the full key
if SERPER_API_KEY_OVERRIDE:
return "Serper API key saved in-session."
return "Cleared in-session API key. Using environment if set."
set_key_btn.click(fn=_set_serper_key, inputs=serper_key_input, outputs=output)
with gr.Tab("Analytics"):
gr.Markdown("## Community Usage Analytics")
gr.Markdown(
"Track daily request counts and average response times from all community users."
)
with gr.Row():
with gr.Column():
requests_plot = gr.BarPlot(
value=last_n_days_df(
14
), # Show only last 14 days for better visibility
x="date",
y="count",
title="Daily Request Count",
tooltip=["date", "count"],
height=350,
x_label_angle=-45, # Rotate labels to prevent overlap
container=False,
)
with gr.Column():
avg_time_plot = gr.BarPlot(
value=last_n_days_avg_time_df(14), # Show only last 14 days
x="date",
y="avg_time",
title="Average Request Time (seconds)",
tooltip=["date", "avg_time", "request_count"],
height=350,
x_label_angle=-45,
container=False,
)
search_button.click(
fn=search_and_chunk,
inputs=[
query_input,
search_type_input,
num_results_input,
tokenizer_input,
chunk_size_input,
overlap_input,
heading_level_input,
min_chars_input,
max_chars_input,
clean_text_input,
],
outputs=output,
api_name=False,
)
# Load fresh analytics data when the page loads or Analytics tab is clicked
demo.load(
fn=lambda: (last_n_days_df(14), last_n_days_avg_time_df(14)),
outputs=[requests_plot, avg_time_plot],
api_name=False,
)
# Expose search_and_chunk as the MCP tool
gr.api(search_and_chunk, api_name="search_and_chunk")
# -------- Markdown chunk helper (from chonkie) --------
def _run_markdown_chunker(
markdown_text: str,
tokenizer_or_token_counter: str = "character",
chunk_size: int = 1000,
chunk_overlap: int = 0,
heading_level: int = 3,
min_characters_per_chunk: int = 50,
max_characters_per_section: int = 4000,
clean_text: bool = True,
) -> List[Dict[str, Any]]:
"""
Use chonkie's MarkdownChunker or MarkdownParser to chunk markdown text and
return a List[Dict] with useful fields.
This follows the documentation in the chonkie commit introducing MarkdownChunker
and its parameters.
"""
markdown_text = markdown_text or ""
if not markdown_text.strip():
return []
# Lazy import so the app can still run without the dependency until this is used
try:
try:
from chonkie import MarkdownParser # type: ignore
except Exception:
try:
from chonkie.chunker.markdown import MarkdownParser # type: ignore
except Exception:
MarkdownParser = None # type: ignore
try:
from chonkie import MarkdownChunker # type: ignore
except Exception:
from chonkie.chunker.markdown import MarkdownChunker # type: ignore
except Exception as exc:
return [{
"error": "chonkie not installed",
"detail": "Install chonkie from the feat/markdown-chunker branch",
"exception": str(exc),
}]
# Prefer MarkdownParser if available and it yields dicts
if 'MarkdownParser' in globals() and MarkdownParser is not None:
try:
parser = MarkdownParser(
tokenizer_or_token_counter=tokenizer_or_token_counter,
chunk_size=int(chunk_size),
chunk_overlap=int(chunk_overlap),
heading_level=int(heading_level),
min_characters_per_chunk=int(min_characters_per_chunk),
max_characters_per_section=int(max_characters_per_section),
clean_text=bool(clean_text),
)
result = parser.parse(markdown_text) if hasattr(parser, 'parse') else parser(markdown_text) # type: ignore
# If the parser returns list of dicts already, pass-through
if isinstance(result, list) and (not result or isinstance(result[0], dict)):
return result # type: ignore
# Else, normalize below
chunks = result
except Exception:
# Fall back to chunker if parser invocation fails
chunks = None
else:
chunks = None
# Fallback to MarkdownChunker if needed or normalization for non-dicts
if chunks is None:
chunker = MarkdownChunker(
tokenizer_or_token_counter=tokenizer_or_token_counter,
chunk_size=int(chunk_size),
chunk_overlap=int(chunk_overlap),
heading_level=int(heading_level),
min_characters_per_chunk=int(min_characters_per_chunk),
max_characters_per_section=int(max_characters_per_section),
clean_text=bool(clean_text),
)
if hasattr(chunker, 'chunk'):
chunks = chunker.chunk(markdown_text) # type: ignore
elif hasattr(chunker, 'split_text'):
chunks = chunker.split_text(markdown_text) # type: ignore
elif callable(chunker):
chunks = chunker(markdown_text) # type: ignore
else:
return [{"error": "Unknown MarkdownChunker interface"}]
# Normalize chunks to list of dicts
normalized: List[Dict[str, Any]] = []
for c in (chunks or []):
if isinstance(c, dict):
normalized.append(c)
continue
item: Dict[str, Any] = {}
for field in ("text", "start_index", "end_index", "token_count", "heading", "metadata"):
if hasattr(c, field):
try:
item[field] = getattr(c, field)
except Exception:
pass
if not item:
# Last resort: string representation
item = {"text": str(c)}
normalized.append(item)
return normalized
with demo:
pass
if __name__ == "__main__":
# Launch with MCP server enabled
# The MCP endpoint will be available at: http://localhost:7860/gradio_api/mcp/sse
demo.launch(mcp_server=True, show_api=True)
|