File size: 11,361 Bytes
8dbf509
7b924b8
 
 
 
 
 
 
 
 
 
 
8dbf509
 
e042085
 
66854bf
af4feb8
2ca300b
 
eb88ab8
 
 
 
 
 
7b924b8
8dbf509
 
 
 
 
af4feb8
a1c598c
eb88ab8
 
7b924b8
eb88ab8
af4feb8
e042085
 
eb88ab8
 
 
 
 
 
 
 
 
 
 
a12fc17
 
eb88ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0308f3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c47b0f3
6113e92
be9cd13
 
0308f3c
be9cd13
0308f3c
be9cd13
0308f3c
be9cd13
 
 
0308f3c
be9cd13
66854bf
 
 
 
be9cd13
0308f3c
66854bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c82859
be9cd13
 
66854bf
 
 
be9cd13
 
66854bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# main.py
import spaces
import torch
import torch.nn.functional as F
from torch.nn import DataParallel
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import os
import json
import numpy as np
import gradio as gr
from huggingface_hub import InferenceClient
import openai
from openai import OpenAI
from globalvars import API_BASE, intention_prompt, tasks , system_message, model_name
from dotenv import load_dotenv
import re 
from utils import load_env_variables
import chromadb
from chromadb import Documents, EmbeddingFunction, Embeddings  
from chromadb.config import Settings  
from chromadb import HttpClient  
from langchain_community.document_loaders import UnstructuredFileLoader  
from utils import load_env_variables  , parse_and_route

os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

hf_token, yi_token = load_env_variables()

def clear_cuda_cache():
    torch.cuda.empty_cache()

client = OpenAI(
    api_key=yi_token,
    base_url=API_BASE
)


class EmbeddingGenerator:  
    def __init__(self, model_name: str, token: str, intention_client):  
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)  
        self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)  
        self.intention_client = intention_client  
  
    def clear_cuda_cache(self):  
        torch.cuda.empty_cache()  
    
    @spaces.GPU
    def compute_embeddings(self, input_text: str):  
        # Get the intention  
        intention_completion = self.intention_client.chat.completions.create(  
            model="yi-large",  
            messages=[  
                {"role": "system", "content": intention_prompt},  
                {"role": "user", "content": input_text}  
            ]  
        )  
        intention_output = intention_completion.choices[0].message['content']  
  
        # Parse and route the intention  
        parsed_task = parse_and_route(intention_output)  
        selected_task = list(parsed_task.keys())[0]  
  
        # Construct the prompt  
        try:  
            task_description = tasks[selected_task]  
        except KeyError:  
            print(f"Selected task not found: {selected_task}")  
            return f"Error: Task '{selected_task}' not found. Please select a valid task."  
          
        query_prefix = f"Instruct: {task_description}\nQuery: "  
        queries = [input_text]  
  
        # Get the embeddings  
        with torch.no_grad():  
            inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)  
            outputs = self.model(**inputs)  
            query_embeddings = outputs.last_hidden_state.mean(dim=1)  
          
        # Normalize embeddings  
        query_embeddings = F.normalize(query_embeddings, p=2, dim=1)  
        embeddings_list = query_embeddings.detach().cpu().numpy().tolist()  
        self.clear_cuda_cache()  
        return embeddings_list  
  
  
class MyEmbeddingFunction(EmbeddingFunction):  
    def __init__(self, embedding_generator: EmbeddingGenerator):  
        self.embedding_generator = embedding_generator  
  
    def __call__(self, input: Documents) -> Embeddings:  
        embeddings = [self.embedding_generator.compute_embeddings(doc) for doc in input]  
        embeddings = [item for sublist in embeddings for item in sublist]  
        return embeddings  
# main.py  
import os  
import uuid  
import gradio as gr  
import torch  
import torch.nn.functional as F  
from torch.nn import DataParallel  
from torch import Tensor  
from transformers import AutoTokenizer, AutoModel  
from huggingface_hub import InferenceClient  
from openai import OpenAI  
from langchain_community.document_loaders import UnstructuredFileLoader  
from chromadb import Documents, EmbeddingFunction, Embeddings  
from chromadb.config import Settings  
from chromadb import HttpClient  
from utils import load_env_variables, parse_and_route  
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name  
  
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'  
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'  
os.environ['CUDA_CACHE_DISABLE'] = '1'  
  
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
  
### Utils  
hf_token, yi_token = load_env_variables()  
  
def clear_cuda_cache():  
    torch.cuda.empty_cache()  
  
client = OpenAI(api_key=yi_token, base_url=API_BASE)  
  
class EmbeddingGenerator:  
    def __init__(self, model_name: str, token: str, intention_client):  
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)  
        self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)  
        self.intention_client = intention_client  
  
    def clear_cuda_cache(self):  
        torch.cuda.empty_cache()  
  
    @spaces.GPU  
    def compute_embeddings(self, input_text: str):  
        # Get the intention  
        intention_completion = self.intention_client.chat.completions.create(  
            model="yi-large",  
            messages=[  
                {"role": "system", "content": intention_prompt},  
                {"role": "user", "content": input_text}  
            ]  
        )  
        intention_output = intention_completion.choices[0].message['content']  
  
        # Parse and route the intention  
        parsed_task = parse_and_route(intention_output)  
        selected_task = list(parsed_task.keys())[0]  
  
        # Construct the prompt  
        try:  
            task_description = tasks[selected_task]  
        except KeyError:  
            print(f"Selected task not found: {selected_task}")  
            return f"Error: Task '{selected_task}' not found. Please select a valid task."  
  
        query_prefix = f"Instruct: {task_description}\nQuery: "  
        queries = [input_text]  
  
        # Get the embeddings  
        with torch.no_grad():  
            inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)  
            outputs = self.model(**inputs)  
            query_embeddings = outputs.last_hidden_state.mean(dim=1)  
  
            # Normalize embeddings  
            query_embeddings = F.normalize(query_embeddings, p=2, dim=1)  
            embeddings_list = query_embeddings.detach().cpu().numpy().tolist()  
            self.clear_cuda_cache()  
            return embeddings_list  
  
class MyEmbeddingFunction(EmbeddingFunction):  
    def __init__(self, embedding_generator: EmbeddingGenerator):  
        self.embedding_generator = embedding_generator  
  
    def __call__(self, input: Documents) -> Embeddings:  
        embeddings = [self.embedding_generator.compute_embeddings(doc) for doc in input]  
        embeddings = [item for sublist in embeddings for item in sublist]  
        return embeddings  
  
def load_documents(file_path: str, mode: str = "elements"):  
    loader = UnstructuredFileLoader(file_path, mode=mode)  
    docs = loader.load()  
    return [doc.page_content for doc in docs]  
  
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):  
    client = chromadb.HttpClient(host='localhost', port=8000) 
    client.reset()  # resets the database   
    collection = client.create_collection(collection_name)  
    return client, collection  
  
def add_documents_to_chroma(client, collection, documents: list, embedding_function: MyEmbeddingFunction):  
    for doc in documents:  
        collection.add(ids=[str(uuid.uuid1())], documents=[doc], embeddings=embedding_function([doc]))  
  
def query_chroma(client, collection_name: str, query_text: str, embedding_function: MyEmbeddingFunction):  
    db = Chroma(client=client, collection_name=collection_name, embedding_function=embedding_function)  
    result_docs = db.similarity_search(query_text)  
    return result_docs  
  
# Initialize clients  
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)  
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)  
embedding_function = MyEmbeddingFunction(embedding_generator=embedding_generator)  
chroma_client, chroma_collection = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)

def respond(  
    message,  
    history: list[tuple[str, str]],  
    system_message,  
    max_tokens,  
    temperature,  
    top_p,  
):  
    retrieved_text = query_documents(message)  
    messages = [{"role": "system", "content": system_message}]  
    for val in history:  
        if val[0]:  
            messages.append({"role": "user", "content": val[0]})  
        if val[1]:  
            messages.append({"role": "assistant", "content": val[1]})  
    messages.append({"role": "user", "content": f"{retrieved_text}\n\n{message}"})  
    response = ""  
    for message in intention_client.chat_completion(  
        messages,  
        max_tokens=max_tokens,  
        stream=True,  
        temperature=temperature,  
        top_p=top_p,  
    ):  
        token = message.choices[0].delta.content  
        response += token  
        yield response  
  
def upload_documents(files):  
    for file in files:  
        loader = UnstructuredFileLoader(file.name)  
        documents = loader.load_documents()  
        chroma_manager.add_documents(documents)  
    return "Documents uploaded and processed successfully!"  
  
def query_documents(query):  
    results = chroma_manager.query(query)  
    return "\n\n".join([result.content for result in results])  
  
with gr.Blocks() as demo:  
    with gr.Tab("Upload Documents"):  
        with gr.Row():  
            document_upload = gr.File(file_count="multiple", file_types=["document"])  
            upload_button = gr.Button("Upload and Process")  
            upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())  
  
    with gr.Tab("Ask Questions"):  
        with gr.Row():  
            chat_interface = gr.ChatInterface(  
                respond,  
                additional_inputs=[  
                    gr.Textbox(value="You are a friendly Chatbot.", label="System message"),  
                    gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),  
                    gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),  
                    gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),  
                ],  
            )  
            query_input = gr.Textbox(label="Query")  
            query_button = gr.Button("Query")  
            query_output = gr.Textbox()  
            query_button.click(query_documents, inputs=query_input, outputs=query_output)  
  
if __name__ == "__main__":  
    demo.launch()