Spaces:
Build error
Build error
File size: 12,319 Bytes
31a7207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import argparse
import json
import re
import time
from collections import OrderedDict
from pathlib import Path
from typing import Dict, Iterable, List, Optional, TextIO, Tuple, Union
import torch
import numpy as np
from whisper.tokenizer import get_tokenizer
from whisper_live.whisper_utils import (mel_filters, store_transcripts,
write_error_stats, load_audio_wav_format,
pad_or_trim)
import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import (str_dtype_to_torch, str_dtype_to_trt,
trt_dtype_to_torch)
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from tensorrt_llm.runtime.session import Session, TensorInfo
SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
class WhisperEncoding:
def __init__(self, engine_dir):
self.session = self.get_session(engine_dir)
def get_session(self, engine_dir):
config_path = engine_dir / 'encoder_config.json'
with open(config_path, 'r') as f:
config = json.load(f)
use_gpt_attention_plugin = config['plugin_config'][
'gpt_attention_plugin']
dtype = config['builder_config']['precision']
n_mels = config['builder_config']['n_mels']
num_languages = config['builder_config']['num_languages']
self.dtype = dtype
self.n_mels = n_mels
self.num_languages = num_languages
serialize_path = engine_dir / f'whisper_encoder_{self.dtype}_tp1_rank0.engine'
with open(serialize_path, 'rb') as f:
session = Session.from_serialized_engine(f.read())
return session
def get_audio_features(self, mel):
inputs = OrderedDict()
output_list = []
inputs.update({'x': mel})
output_list.append(
TensorInfo('x', str_dtype_to_trt(self.dtype), mel.shape))
output_info = (self.session).infer_shapes(output_list)
logger.debug(f'output info {output_info}')
outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
stream = torch.cuda.current_stream()
ok = self.session.run(inputs=inputs,
outputs=outputs,
stream=stream.cuda_stream)
assert ok, 'Engine execution failed'
stream.synchronize()
audio_features = outputs['output']
return audio_features
class WhisperDecoding:
def __init__(self, engine_dir, runtime_mapping, debug_mode=False):
self.decoder_config = self.get_config(engine_dir)
self.decoder_generation_session = self.get_session(
engine_dir, runtime_mapping, debug_mode)
def get_config(self, engine_dir):
config_path = engine_dir / 'decoder_config.json'
with open(config_path, 'r') as f:
config = json.load(f)
decoder_config = OrderedDict()
decoder_config.update(config['plugin_config'])
decoder_config.update(config['builder_config'])
return decoder_config
def get_session(self, engine_dir, runtime_mapping, debug_mode=False):
dtype = self.decoder_config['precision']
serialize_path = engine_dir / f'whisper_decoder_{dtype}_tp1_rank0.engine'
with open(serialize_path, "rb") as f:
decoder_engine_buffer = f.read()
decoder_model_config = ModelConfig(
num_heads=self.decoder_config['num_heads'],
num_kv_heads=self.decoder_config['num_heads'],
hidden_size=self.decoder_config['hidden_size'],
vocab_size=self.decoder_config['vocab_size'],
num_layers=self.decoder_config['num_layers'],
gpt_attention_plugin=self.decoder_config['gpt_attention_plugin'],
remove_input_padding=self.decoder_config['remove_input_padding'],
cross_attention=self.decoder_config['cross_attention'],
has_position_embedding=self.
decoder_config['has_position_embedding'],
has_token_type_embedding=self.
decoder_config['has_token_type_embedding'],
)
decoder_generation_session = tensorrt_llm.runtime.GenerationSession(
decoder_model_config,
decoder_engine_buffer,
runtime_mapping,
debug_mode=debug_mode)
return decoder_generation_session
def generate(self,
decoder_input_ids,
encoder_outputs,
eot_id,
max_new_tokens=40,
num_beams=1):
encoder_input_lengths = torch.tensor(
[encoder_outputs.shape[1] for x in range(encoder_outputs.shape[0])],
dtype=torch.int32,
device='cuda')
decoder_input_lengths = torch.tensor([
decoder_input_ids.shape[-1]
for _ in range(decoder_input_ids.shape[0])
],
dtype=torch.int32,
device='cuda')
decoder_max_input_length = torch.max(decoder_input_lengths).item()
# generation config
sampling_config = SamplingConfig(end_id=eot_id,
pad_id=eot_id,
num_beams=num_beams)
self.decoder_generation_session.setup(
decoder_input_lengths.size(0),
decoder_max_input_length,
max_new_tokens,
beam_width=num_beams,
encoder_max_input_length=encoder_outputs.shape[1])
torch.cuda.synchronize()
decoder_input_ids = decoder_input_ids.type(torch.int32).cuda()
output_ids = self.decoder_generation_session.decode(
decoder_input_ids,
decoder_input_lengths,
sampling_config,
encoder_output=encoder_outputs,
encoder_input_lengths=encoder_input_lengths,
)
torch.cuda.synchronize()
# get the list of int from output_ids tensor
output_ids = output_ids.cpu().numpy().tolist()
return output_ids
class WhisperTRTLLM(object):
def __init__(
self,
engine_dir,
debug_mode=False,
assets_dir=None,
device=None
):
world_size = 1
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_dir = Path(engine_dir)
self.encoder = WhisperEncoding(engine_dir)
self.decoder = WhisperDecoding(engine_dir,
runtime_mapping,
debug_mode=False)
self.n_mels = self.encoder.n_mels
# self.tokenizer = get_tokenizer(num_languages=self.encoder.num_languages,
# tokenizer_dir=assets_dir)
self.device = device
self.tokenizer = get_tokenizer(
False,
# num_languages=self.encoder.num_languages,
language="en",
task="transcribe",
)
self.filters = mel_filters(self.device, self.encoder.n_mels, assets_dir)
def log_mel_spectrogram(
self,
audio: Union[str, np.ndarray, torch.Tensor],
padding: int = 0,
return_duration = True
):
"""
Compute the log-Mel spectrogram of
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 and 128 are supported
padding: int
Number of zero samples to pad to the right
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
Returns
-------
torch.Tensor, shape = (80 or 128, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
if audio.endswith('.wav'):
audio, _ = load_audio_wav_format(audio)
else:
audio = load_audio(audio)
assert isinstance(audio,
np.ndarray), f"Unsupported audio type: {type(audio)}"
duration = audio.shape[-1] / SAMPLE_RATE
audio = pad_or_trim(audio, N_SAMPLES)
audio = audio.astype(np.float32)
audio = torch.from_numpy(audio)
if self.device is not None:
audio = audio.to(self.device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio,
N_FFT,
HOP_LENGTH,
window=window,
return_complex=True)
magnitudes = stft[..., :-1].abs()**2
mel_spec = self.filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
if return_duration:
return log_spec, duration
else:
return log_spec
def process_batch(
self,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
num_beams=1):
prompt_id = self.tokenizer.encode(
text_prefix, allowed_special=set(self.tokenizer.special_tokens.keys()))
prompt_id = torch.tensor(prompt_id)
batch_size = mel.shape[0]
decoder_input_ids = prompt_id.repeat(batch_size, 1)
encoder_output = self.encoder.get_audio_features(mel)
output_ids = self.decoder.generate(decoder_input_ids,
encoder_output,
self.tokenizer.eot,
max_new_tokens=96,
num_beams=num_beams)
texts = []
for i in range(len(output_ids)):
text = self.tokenizer.decode(output_ids[i][0]).strip()
texts.append(text)
return texts
def transcribe(
self,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
):
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
predictions = self.process_batch(mel, text_prefix, num_beams)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
return prediction.strip()
def decode_wav_file(
model,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
normalizer=None,
mel_filters_dir=None):
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
# repeat the mel spectrogram to match the batch size
mel = mel.repeat(batch_size, 1, 1)
predictions = model.process_batch(mel, text_prefix, num_beams)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
if normalizer:
prediction = normalizer(prediction)
return prediction.strip()
if __name__=="__main__":
tensorrt_llm.logger.set_level("error")
model = WhisperTRTLLM("/root/TensorRT-LLM/examples/whisper/whisper_small_en", False, "../assets", device="cuda")
mel, total_duration = model.log_mel_spectrogram(
"../assets/1221-135766-0002.wav",
)
results = model.transcribe(mel)
print(results, total_duration) |