Spaces:
Running
Running
File size: 8,878 Bytes
40fd629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
#!/usr/bin/env python3
"""
Test script for quantization functionality
"""
import os
import sys
import tempfile
import shutil
from pathlib import Path
import logging
# Add the project root to the path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))
from scripts.model_tonic.quantize_model import ModelQuantizer
def test_quantization_imports():
"""Test that all required imports are available"""
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
from torchao.quantization import (
Int8WeightOnlyConfig,
Int4WeightOnlyConfig,
Int8DynamicActivationInt8WeightConfig
)
from torchao.dtypes import Int4CPULayout
print("β
All quantization imports successful")
return True
except ImportError as e:
print(f"β Import error: {e}")
return False
def test_quantizer_initialization():
"""Test quantizer initialization"""
try:
with tempfile.TemporaryDirectory() as temp_dir:
# Create a dummy model directory
model_dir = Path(temp_dir) / "dummy_model"
model_dir.mkdir()
# Create minimal model files
(model_dir / "config.json").write_text('{"model_type": "test"}')
(model_dir / "pytorch_model.bin").write_text('dummy')
quantizer = ModelQuantizer(
model_path=str(model_dir),
repo_name="test/test-quantized",
token="dummy_token"
)
print("β
Quantizer initialization successful")
return True
except Exception as e:
print(f"β Quantizer initialization failed: {e}")
return False
def test_quantization_config_creation():
"""Test quantization configuration creation"""
try:
with tempfile.TemporaryDirectory() as temp_dir:
model_dir = Path(temp_dir) / "dummy_model"
model_dir.mkdir()
(model_dir / "config.json").write_text('{"model_type": "test"}')
(model_dir / "pytorch_model.bin").write_text('dummy')
quantizer = ModelQuantizer(
model_path=str(model_dir),
repo_name="test/test-quantized",
token="dummy_token"
)
# Test int8 config
config_int8 = quantizer.create_quantization_config("int8_weight_only", 128)
print("β
int8 config creation successful")
# Test int4 config
config_int4 = quantizer.create_quantization_config("int4_weight_only", 128)
print("β
int4 config creation successful")
return True
except Exception as e:
print(f"β Config creation failed: {e}")
return False
def test_model_validation():
"""Test model path validation"""
try:
with tempfile.TemporaryDirectory() as temp_dir:
# Test with valid model
model_dir = Path(temp_dir) / "valid_model"
model_dir.mkdir()
(model_dir / "config.json").write_text('{"model_type": "test"}')
(model_dir / "pytorch_model.bin").write_text('dummy')
quantizer = ModelQuantizer(
model_path=str(model_dir),
repo_name="test/test-quantized",
token="dummy_token"
)
if quantizer.validate_model_path():
print("β
Valid model validation successful")
else:
print("β Valid model validation failed")
return False
# Test with invalid model
invalid_dir = Path(temp_dir) / "invalid_model"
invalid_dir.mkdir()
# Missing required files
quantizer_invalid = ModelQuantizer(
model_path=str(invalid_dir),
repo_name="test/test-quantized",
token="dummy_token"
)
if not quantizer_invalid.validate_model_path():
print("β
Invalid model validation successful")
else:
print("β Invalid model validation failed")
return False
return True
except Exception as e:
print(f"β Model validation test failed: {e}")
return False
def test_quantized_model_card_creation():
"""Test quantized model card creation"""
try:
with tempfile.TemporaryDirectory() as temp_dir:
model_dir = Path(temp_dir) / "dummy_model"
model_dir.mkdir()
(model_dir / "config.json").write_text('{"model_type": "test"}')
(model_dir / "pytorch_model.bin").write_text('dummy')
quantizer = ModelQuantizer(
model_path=str(model_dir),
repo_name="test/test-quantized",
token="dummy_token"
)
# Test int8 model card
card_int8 = quantizer.create_quantized_model_card("int8_weight_only", "test/model")
if "int8_weight_only" in card_int8 and "GPU" in card_int8:
print("β
int8 model card creation successful")
else:
print("β int8 model card creation failed")
return False
# Test int4 model card
card_int4 = quantizer.create_quantized_model_card("int4_weight_only", "test/model")
if "int4_weight_only" in card_int4 and "CPU" in card_int4:
print("β
int4 model card creation successful")
else:
print("β int4 model card creation failed")
return False
return True
except Exception as e:
print(f"β Model card creation test failed: {e}")
return False
def test_quantized_readme_creation():
"""Test quantized README creation"""
try:
with tempfile.TemporaryDirectory() as temp_dir:
model_dir = Path(temp_dir) / "dummy_model"
model_dir.mkdir()
(model_dir / "config.json").write_text('{"model_type": "test"}')
(model_dir / "pytorch_model.bin").write_text('dummy')
quantizer = ModelQuantizer(
model_path=str(model_dir),
repo_name="test/test-quantized",
token="dummy_token"
)
# Test int8 README
readme_int8 = quantizer.create_quantized_readme("int8_weight_only", "test/model")
if "int8_weight_only" in readme_int8 and "GPU optimized" in readme_int8:
print("β
int8 README creation successful")
else:
print("β int8 README creation failed")
return False
# Test int4 README
readme_int4 = quantizer.create_quantized_readme("int4_weight_only", "test/model")
if "int4_weight_only" in readme_int4 and "CPU optimized" in readme_int4:
print("β
int4 README creation successful")
else:
print("β int4 README creation failed")
return False
return True
except Exception as e:
print(f"β README creation test failed: {e}")
return False
def main():
"""Run all quantization tests"""
print("π§ͺ Running Quantization Tests")
print("=" * 40)
tests = [
("Import Test", test_quantization_imports),
("Initialization Test", test_quantizer_initialization),
("Config Creation Test", test_quantization_config_creation),
("Model Validation Test", test_model_validation),
("Model Card Test", test_quantized_model_card_creation),
("README Test", test_quantized_readme_creation),
]
passed = 0
total = len(tests)
for test_name, test_func in tests:
print(f"\nπ Running {test_name}...")
try:
if test_func():
passed += 1
print(f"β
{test_name} passed")
else:
print(f"β {test_name} failed")
except Exception as e:
print(f"β {test_name} failed with exception: {e}")
print("\n" + "=" * 40)
print(f"π Test Results: {passed}/{total} tests passed")
if passed == total:
print("π All quantization tests passed!")
return 0
else:
print("β οΈ Some tests failed. Check the output above.")
return 1
if __name__ == "__main__":
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
exit(main()) |