Spaces:
Running
Running
File size: 17,504 Bytes
d8dd7a1 5fe83da 93ed7a1 d8dd7a1 5fe83da 93ed7a1 d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 d8dd7a1 96fd5b3 5fe83da 96fd5b3 5fe83da 96fd5b3 5fe83da 93ed7a1 231fcd0 d8dd7a1 96fd5b3 d8dd7a1 0e297cd 5fe83da d8dd7a1 32fca7d 6f0279c 32fca7d 6f0279c 32fca7d d8dd7a1 32fca7d d8dd7a1 96fd5b3 d8dd7a1 c740b39 d8dd7a1 c740b39 d8dd7a1 c740b39 d8dd7a1 40f937e 96fd5b3 40f937e 96fd5b3 40f937e 96fd5b3 40f937e d8dd7a1 40f937e 96fd5b3 40f937e 96fd5b3 40f937e 96fd5b3 40f937e 96fd5b3 d8dd7a1 40f937e d8dd7a1 40fd629 d8dd7a1 40fd629 d8dd7a1 40fd629 d8dd7a1 96fd5b3 d8dd7a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
"""
SmolLM3 Dataset Handler
Handles data loading, preprocessing, and tokenization for SmolLM3 fine-tuning
"""
import os
import json
import torch
from typing import Dict, List, Optional, Union
from datasets import Dataset, load_dataset
from transformers import PreTrainedTokenizer
import logging
logger = logging.getLogger(__name__)
class SmolLM3Dataset:
"""Dataset handler for SmolLM3 fine-tuning"""
def __init__(
self,
data_path: str,
tokenizer: PreTrainedTokenizer,
max_seq_length: int = 4096,
use_chat_template: bool = True,
chat_template_kwargs: Optional[Dict] = None,
filter_bad_entries: bool = False,
bad_entry_field: str = "bad_entry",
sample_size: Optional[int] = None,
sample_seed: int = 42
):
self.data_path = data_path
self.tokenizer = tokenizer
self.max_seq_length = max_seq_length
self.use_chat_template = use_chat_template
self.chat_template_kwargs = chat_template_kwargs or {}
self.filter_bad_entries = filter_bad_entries
self.bad_entry_field = bad_entry_field
self.sample_size = sample_size
self.sample_seed = sample_seed
# Load and process dataset
self.dataset = self._load_dataset()
self.processed_dataset = self._process_dataset()
def _load_dataset(self) -> Dataset:
"""Load dataset from various formats"""
logger.info("Loading dataset from %s", self.data_path)
# Check if it's a Hugging Face dataset
if os.path.isdir(self.data_path):
# Local directory
try:
dataset = load_dataset("json", data_files={
"train": os.path.join(self.data_path, "train.json"),
"validation": os.path.join(self.data_path, "validation.json") if os.path.exists(os.path.join(self.data_path, "validation.json")) else None,
"test": os.path.join(self.data_path, "test.json") if os.path.exists(os.path.join(self.data_path, "test.json")) else None
})
logger.info("Loaded dataset from local JSON files")
return dataset
except Exception as e:
logger.warning("Failed to load as JSON dataset: %s", e)
# Try to load as a single JSON file
if os.path.isfile(self.data_path) and self.data_path.endswith('.json'):
try:
with open(self.data_path, 'r', encoding='utf-8') as f:
data = json.load(f)
# Convert to dataset format
if isinstance(data, list):
dataset = Dataset.from_list(data)
else:
dataset = Dataset.from_dict(data)
logger.info("Loaded dataset from single JSON file")
return dataset
except Exception as e:
logger.error("Failed to load JSON file: %s", e)
raise
# Try to load as a Hugging Face dataset name
try:
dataset = load_dataset(self.data_path)
logger.info("Loaded Hugging Face dataset: %s", self.data_path)
# Filter bad entries if requested
if self.filter_bad_entries and self.bad_entry_field in dataset["train"].column_names:
logger.info("Filtering out bad entries using field: %s", self.bad_entry_field)
for split in dataset:
if self.bad_entry_field in dataset[split].column_names:
original_size = len(dataset[split])
dataset[split] = dataset[split].filter(lambda x: not x[self.bad_entry_field])
filtered_size = len(dataset[split])
logger.info("Filtered %s: %d -> %d samples", split, original_size, filtered_size)
# Apply sampling if requested
if self.sample_size is not None and "train" in dataset:
logger.info(f"Sampling {self.sample_size} random samples from {len(dataset['train'])} total samples")
import random
random.seed(self.sample_seed)
# Sample indices
total_samples = len(dataset["train"])
if self.sample_size > total_samples:
logger.warning(f"Requested sample size ({self.sample_size}) is larger than dataset size ({total_samples}). Using all samples.")
sampled_indices = list(range(total_samples))
else:
sampled_indices = random.sample(range(total_samples), self.sample_size)
# Apply sampling to train split
dataset["train"] = dataset["train"].select(sampled_indices)
logger.info(f"Sampled {len(dataset['train'])} train samples")
# Also sample validation if it exists and is large
if "validation" in dataset and len(dataset["validation"]) > 1000:
val_sample_size = min(1000, len(dataset["validation"]))
logger.info(f"Sampling {val_sample_size} validation samples from {len(dataset['validation'])} total")
val_sampled_indices = random.sample(range(len(dataset["validation"])), val_sample_size)
dataset["validation"] = dataset["validation"].select(val_sampled_indices)
logger.info(f"Sampled {len(dataset['validation'])} validation samples")
# If only 'train' split exists, create validation and test splits
if ("train" in dataset) and ("validation" not in dataset or "test" not in dataset):
logger.info("Automatically splitting train into train/validation/test (98/1/1)")
split_dataset = dataset["train"].train_test_split(test_size=0.02, seed=42)
# Now split test into validation and test (1% each)
val_test_split = split_dataset["test"].train_test_split(test_size=0.5, seed=42)
dataset = {
"train": split_dataset["train"],
"validation": val_test_split["train"],
"test": val_test_split["test"]
}
return dataset
except Exception as e:
logger.error("Failed to load dataset: %s", e)
raise
def _process_dataset(self) -> Dataset:
"""Process the dataset for training"""
logger.info("Processing dataset for training")
def format_chat_template(example):
"""Format example using chat template"""
if self.use_chat_template:
try:
# Handle different input formats
if "messages" in example:
messages = example["messages"]
elif "conversations" in example:
messages = example["conversations"]
elif "user" in example and "assistant" in example:
messages = [
{"role": "user", "content": example["user"]},
{"role": "assistant", "content": example["assistant"]}
]
elif "instruction" in example and "output" in example:
messages = [
{"role": "user", "content": example["instruction"]},
{"role": "assistant", "content": example["output"]}
]
elif "prompt" in example and "completion" in example:
messages = [
{"role": "user", "content": example["prompt"]},
{"role": "assistant", "content": example["completion"]}
]
elif "prompt" in example and "accepted_completion" in example:
messages = [
{"role": "user", "content": example["prompt"]},
{"role": "assistant", "content": example["accepted_completion"]}
]
elif "prompt" in example and "completion" in example:
messages = [
{"role": "user", "content": example["prompt"]},
{"role": "assistant", "content": example["completion"]}
]
else:
# Fallback: treat as plain text
return {"text": str(example)}
# Add system message with /no_think tag if not present
if messages and messages[0]["role"] != "system":
# Check if we should add /no_think tag based on configuration
system_content = "Tu es TonicIA, un assistant francophone rigoureux et bienveillant."
if hasattr(self, 'chat_template_kwargs') and self.chat_template_kwargs:
# If no_think_system_message is True, add /no_think tag
if self.chat_template_kwargs.get("no_think_system_message") == True:
system_content = "Tu es TonicIA , un assistant francophone rigoureux et bienveillant. /no_think"
messages.insert(0, {"role": "system", "content": system_content})
# Apply chat template
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=self.chat_template_kwargs.get("add_generation_prompt", True)
)
return {"text": text}
except Exception as e:
logger.warning("Failed to apply chat template: %s", e)
# Fallback to plain text
return {"text": str(example)}
else:
# Use plain text
if "text" in example:
return {"text": example["text"]}
else:
return {"text": str(example)}
def tokenize_function(examples):
"""Tokenize the examples"""
# Tokenize the texts with fixed length
tokenized = self.tokenizer(
examples["text"],
truncation=True,
padding=True, # Enable padding during tokenization
max_length=self.max_seq_length,
return_overflowing_tokens=False, # Don't return overflowing tokens
return_length=True,
)
# Calculate input length
input_length = [len(x) for x in tokenized["input_ids"]]
# Create labels (same as input_ids for causal LM)
tokenized["labels"] = tokenized["input_ids"].copy()
return {
"input_ids": tokenized["input_ids"],
"attention_mask": tokenized["attention_mask"],
"labels": tokenized["labels"],
"length": input_length,
}
# Process the dataset - handle both single dataset and dictionary of splits
if isinstance(self.dataset, dict):
# Process each split individually
processed_dataset = {}
for split_name, split_dataset in self.dataset.items():
logger.info("Processing %s split...", split_name)
# Format the split
processed_split = split_dataset.map(
format_chat_template,
remove_columns=split_dataset.column_names,
desc="Formatting {} dataset".format(split_name)
)
# Tokenize the split
tokenized_split = processed_split.map(
tokenize_function,
remove_columns=processed_split.column_names,
desc="Tokenizing {} dataset".format(split_name),
batched=True,
)
processed_dataset[split_name] = tokenized_split
else:
# Single dataset
processed_dataset = self.dataset.map(
format_chat_template,
remove_columns=self.dataset.column_names,
desc="Formatting dataset"
)
# Tokenize the dataset
processed_dataset = processed_dataset.map(
tokenize_function,
remove_columns=processed_dataset.column_names,
desc="Tokenizing dataset",
batched=True,
)
# Log processing results
if isinstance(processed_dataset, dict):
logger.info("Dataset processed. Train samples: %d", len(processed_dataset['train']))
if "validation" in processed_dataset:
logger.info("Validation samples: %d", len(processed_dataset['validation']))
if "test" in processed_dataset:
logger.info("Test samples: %d", len(processed_dataset['test']))
else:
logger.info("Dataset processed. Samples: %d", len(processed_dataset))
return processed_dataset
def get_train_dataset(self) -> Dataset:
"""Get training dataset"""
return self.processed_dataset["train"]
def get_eval_dataset(self) -> Optional[Dataset]:
"""Get evaluation dataset if available"""
if "validation" in self.processed_dataset:
return self.processed_dataset["validation"]
elif "test" in self.processed_dataset:
return self.processed_dataset["test"]
else:
return None
def get_data_collator(self):
"""Get data collator for training"""
from transformers import DataCollatorForLanguageModeling
import torch
base_collator = DataCollatorForLanguageModeling(
tokenizer=self.tokenizer,
mlm=False,
pad_to_multiple_of=8,
return_tensors="pt",
)
def collator_with_stats(features):
batch = base_collator(features)
# Calculate token stats
input_ids = batch["input_ids"]
attention_mask = batch.get("attention_mask", None)
labels = batch.get("labels", None)
pad_token_id = self.tokenizer.pad_token_id
if pad_token_id is None:
pad_token_id = self.tokenizer.eos_token_id
total_tokens = int((input_ids != pad_token_id).sum().item())
padding_tokens = int((input_ids == pad_token_id).sum().item())
batch_size, seq_len = input_ids.shape
# Truncated tokens: count tokens that were cut off due to max_seq_length
# (Assume all input is truncated to max_seq_length, so count tokens at max length)
truncated_tokens = 0
for f in features:
if "length" in f and f["length"] >= self.max_seq_length:
truncated_tokens += f["length"] - self.max_seq_length + 1
batch["total_tokens"] = total_tokens
batch["padding_tokens"] = padding_tokens
batch["truncated_tokens"] = truncated_tokens
batch["batch_size"] = batch_size
batch["seq_len"] = seq_len
return batch
return collator_with_stats
def create_sample_dataset(output_path: str = "my_dataset"):
"""Create a sample dataset for testing"""
os.makedirs(output_path, exist_ok=True)
# Sample conversations
conversations = [
{
"messages": [
{"role": "user", "content": "What is machine learning?"},
{"role": "assistant", "content": "Machine learning is a subset of artificial intelligence that enables computers to learn and improve from experience without being explicitly programmed."}
]
},
{
"messages": [
{"role": "user", "content": "Explain gravity in simple terms."},
{"role": "assistant", "content": "Gravity is the force that pulls objects toward each other, like how the Earth pulls things down to the ground."}
]
},
{
"messages": [
{"role": "user", "content": "How do I make a cup of coffee?"},
{"role": "assistant", "content": "To make a cup of coffee: 1) Boil water, 2) Add coffee grounds to a filter, 3) Pour hot water over the grounds, 4) Let it brew for a few minutes, 5) Enjoy!"}
]
}
]
# Split into train/validation
train_data = conversations[:2]
validation_data = conversations[2:]
# Save to files
with open(os.path.join(output_path, "train.json"), 'w', encoding='utf-8') as f:
json.dump(train_data, f, indent=2, ensure_ascii=False)
with open(os.path.join(output_path, "validation.json"), 'w', encoding='utf-8') as f:
json.dump(validation_data, f, indent=2, ensure_ascii=False)
logger.info("Sample dataset created in %s", output_path)
return output_path |