Spaces:
Running
Running
File size: 26,143 Bytes
5fe83da ebe598e 5fe83da d0d19b2 5fe83da d0d19b2 5fe83da ebe598e 5fe83da d0d19b2 5fe83da ebe598e 5fe83da ebe598e 39db0ca 59e57ff 5fe83da 665844a 5fe83da ebe598e 5fe83da 39db0ca 5fe83da 59e57ff ebe598e 5fe83da 665844a 5fe83da ebe598e 5fe83da ebe598e 5fe83da 665844a ebe598e 665844a 5fe83da 665844a 5fe83da d0d19b2 665844a d0d19b2 665844a d0d19b2 5fe83da d0d19b2 5fe83da d0d19b2 5fe83da d0d19b2 5fe83da 59e57ff 665844a 59e57ff 2f866e6 5fe83da 40fd629 5fe83da 40fd629 5fe83da 2f866e6 5fe83da 665844a 5fe83da ebe598e 2f866e6 5fe83da 665844a 5fe83da 40fd629 5fe83da ebe598e 5fe83da ebe598e 5fe83da 40fd629 5fe83da d0d19b2 5fe83da d0d19b2 665844a d0d19b2 5fe83da 665844a 5fe83da 665844a 5fe83da 665844a 5fe83da ebe598e 5fe83da ebe598e 5fe83da d0d19b2 5fe83da ebe598e 665844a 5fe83da ebe598e 5fe83da ebe598e 5fe83da 665844a 5fe83da ebe598e 665844a ebe598e 5fe83da ebe598e 5fe83da ebe598e 665844a ebe598e 5fe83da 665844a 5fe83da ebe598e 5fe83da 665844a ebe598e 5fe83da 665844a 5fe83da ebe598e 5fe83da ebe598e 39db0ca 59e57ff 5fe83da ebe598e 39db0ca 59e57ff 5fe83da ebe598e 5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
#!/usr/bin/env python3
"""
Push Trained Model and Results to Hugging Face Hub
Integrates with Trackio monitoring and HF Datasets for complete model deployment
"""
import os
import json
import argparse
import logging
import time
from pathlib import Path
from typing import Dict, Any, Optional, List
from datetime import datetime
import subprocess
import shutil
import platform
# Set timeout for HF operations to prevent hanging
os.environ['HF_HUB_DOWNLOAD_TIMEOUT'] = '300'
os.environ['HF_HUB_UPLOAD_TIMEOUT'] = '600'
try:
from huggingface_hub import HfApi, create_repo, upload_file
from huggingface_hub import snapshot_download, hf_hub_download
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub")
try:
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'src'))
from monitoring import SmolLM3Monitor
MONITORING_AVAILABLE = True
except ImportError:
MONITORING_AVAILABLE = False
print("Warning: monitoring module not available")
logger = logging.getLogger(__name__)
class TimeoutError(Exception):
"""Custom timeout exception"""
pass
def timeout_handler(signum, frame):
"""Signal handler for timeout"""
raise TimeoutError("Operation timed out")
class HuggingFacePusher:
"""Push trained models and results to Hugging Face Hub with HF Datasets integration"""
def __init__(
self,
model_path: str,
repo_name: str,
token: Optional[str] = None,
private: bool = False,
trackio_url: Optional[str] = None,
experiment_name: Optional[str] = None,
dataset_repo: Optional[str] = None,
hf_token: Optional[str] = None,
author_name: Optional[str] = None,
model_description: Optional[str] = None,
training_config_type: Optional[str] = None,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
batch_size: Optional[str] = None,
learning_rate: Optional[str] = None,
max_epochs: Optional[str] = None,
max_seq_length: Optional[str] = None,
trainer_type: Optional[str] = None
):
self.model_path = Path(model_path)
# Original user input (may be just the repo name without username)
self.repo_name = repo_name
self.token = token or hf_token or os.getenv('HF_TOKEN')
self.private = private
self.trackio_url = trackio_url
self.experiment_name = experiment_name
self.author_name = author_name
self.model_description = model_description
# Training configuration details for model card generation
self.training_config_type = training_config_type
self.model_name = model_name
self.dataset_name = dataset_name
self.batch_size = batch_size
self.learning_rate = learning_rate
self.max_epochs = max_epochs
self.max_seq_length = max_seq_length
self.trainer_type = trainer_type
# HF Datasets configuration
self.dataset_repo = dataset_repo or os.getenv('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
self.hf_token = hf_token or os.getenv('HF_TOKEN')
# Initialize HF API
if HF_AVAILABLE:
self.api = HfApi(token=self.token)
else:
raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub")
# Resolve the full repo id (username/repo) if user only provided repo name
self.repo_id = self._resolve_repo_id(self.repo_name)
# Initialize monitoring if available
self.monitor = None
if MONITORING_AVAILABLE:
self.monitor = SmolLM3Monitor(
experiment_name=experiment_name or "model_push",
trackio_url=trackio_url,
enable_tracking=bool(trackio_url),
hf_token=self.hf_token,
dataset_repo=self.dataset_repo
)
logger.info(f"Initialized HuggingFacePusher for {self.repo_id}")
logger.info(f"Dataset repository: {self.dataset_repo}")
def _resolve_repo_id(self, repo_name: str) -> str:
"""Return a fully-qualified repo id in the form username/repo.
If the provided name already contains a '/', it is returned unchanged.
Otherwise, we attempt to derive the username from the authenticated token
or from the HF_USERNAME environment variable.
"""
try:
if "/" in repo_name:
return repo_name
# Need a username. Prefer API whoami(), fallback to env HF_USERNAME
username: Optional[str] = None
if self.token:
try:
user_info = self.api.whoami()
username = user_info.get("name") or user_info.get("username")
except Exception:
username = None
if not username:
username = os.getenv("HF_USERNAME")
if not username:
raise ValueError(
"Username could not be determined. Provide a token or set HF_USERNAME, "
"or pass a fully-qualified repo id 'username/repo'."
)
return f"{username}/{repo_name}"
except Exception as resolve_error:
logger.error(f"Failed to resolve full repo id for '{repo_name}': {resolve_error}")
# Fall back to provided value (may fail later at create/upload)
return repo_name
def create_repository(self) -> bool:
"""Create the Hugging Face repository"""
try:
logger.info(f"Creating repository: {self.repo_id}")
# Create repository with timeout handling
try:
# Create repository
create_repo(
repo_id=self.repo_id,
token=self.token,
private=self.private,
exist_ok=True
)
logger.info(f"β
Repository created: https://huggingface.co/{self.repo_id}")
return True
except Exception as e:
logger.error(f"β Repository creation failed: {e}")
return False
except Exception as e:
logger.error(f"β Failed to create repository: {e}")
return False
def validate_model_path(self) -> bool:
"""Validate that the model path contains required files"""
# Support both safetensors and pytorch formats
required_files = [
"config.json",
"tokenizer.json",
"tokenizer_config.json"
]
# Check for model files (either safetensors or pytorch)
model_files = [
"model.safetensors.index.json", # Safetensors format
"pytorch_model.bin" # PyTorch format
]
missing_files = []
for file in required_files:
if not (self.model_path / file).exists():
missing_files.append(file)
# Check if at least one model file exists
model_file_exists = any((self.model_path / file).exists() for file in model_files)
if not model_file_exists:
missing_files.extend(model_files)
if missing_files:
logger.error(f"β Missing required files: {missing_files}")
return False
logger.info("β
Model files validated")
return True
def create_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
"""Create a comprehensive model card using the generate_model_card.py script"""
try:
# Import the model card generator
import sys
sys.path.append(os.path.join(os.path.dirname(__file__)))
from generate_model_card import ModelCardGenerator, create_default_variables
# Create generator
generator = ModelCardGenerator()
# Create variables for the model card
variables = create_default_variables()
# Update with actual values
variables.update({
"repo_name": self.repo_id,
"model_name": self.repo_id.split('/')[-1],
"experiment_name": self.experiment_name or "model_push",
"dataset_repo": self.dataset_repo,
"author_name": self.author_name or "Model Author",
"model_description": self.model_description or "A fine-tuned version of SmolLM3-3B for improved text generation capabilities.",
"training_config_type": self.training_config_type or "Custom Configuration",
"base_model": self.model_name or "HuggingFaceTB/SmolLM3-3B",
"dataset_name": self.dataset_name or "Custom Dataset",
"trainer_type": self.trainer_type or "SFTTrainer",
"batch_size": str(self.batch_size) if self.batch_size else "8",
"learning_rate": str(self.learning_rate) if self.learning_rate else "5e-6",
"max_epochs": str(self.max_epochs) if self.max_epochs else "3",
"max_seq_length": str(self.max_seq_length) if self.max_seq_length else "2048",
"hardware_info": self._get_hardware_info(),
"trackio_url": self.trackio_url or "N/A",
"training_loss": str(results.get('train_loss', 'N/A')),
"validation_loss": str(results.get('eval_loss', 'N/A')),
"perplexity": str(results.get('perplexity', 'N/A')),
"quantized_models": False # Set to True if quantized models are available
})
# Generate the model card
model_card_content = generator.generate_model_card(variables)
logger.info("β
Model card generated using generate_model_card.py")
return model_card_content
except Exception as e:
logger.error(f"β Failed to generate model card with generator: {e}")
logger.info("π Falling back to simple model card")
return self._create_simple_model_card(training_config, results)
def _create_simple_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
"""Create a simple model card without complex YAML to avoid formatting issues"""
return f"""---
language:
- en
- fr
license: apache-2.0
tags:
- smollm3
- fine-tuned
- causal-lm
- text-generation
pipeline_tag: text-generation
base_model: HuggingFaceTB/SmolLM3-3B
---
# {self.repo_id.split('/')[-1]}
This is a fine-tuned SmolLM3 model based on the HuggingFaceTB/SmolLM3-3B architecture.
## Model Details
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Method**: Supervised Fine-tuning
- **Training Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
- **Dataset Repository**: {self.dataset_repo}
- **Hardware**: {self._get_hardware_info()}
## Training Configuration
```json
{json.dumps(training_config, indent=2)}
```
## Training Results
```json
{json.dumps(results, indent=2)}
```
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("{self.repo_id}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_id}")
# Generate text
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Information
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Hardware**: {self._get_hardware_info()}
- **Training Time**: {results.get('training_time_hours', 'Unknown')} hours
- **Final Loss**: {results.get('final_loss', 'Unknown')}
- **Final Accuracy**: {results.get('final_accuracy', 'Unknown')}
- **Dataset Repository**: {self.dataset_repo}
## Model Performance
- **Training Loss**: {results.get('train_loss', 'Unknown')}
- **Validation Loss**: {results.get('eval_loss', 'Unknown')}
- **Training Steps**: {results.get('total_steps', 'Unknown')}
## Experiment Tracking
This model was trained with experiment tracking enabled. Training metrics and configuration are stored in the HF Dataset repository: `{self.dataset_repo}`
## Limitations and Biases
This model is fine-tuned for specific tasks and may not generalize well to all use cases. Please evaluate the model's performance on your specific task before deployment.
## License
This model is licensed under the Apache 2.0 License.
"""
def _get_model_size(self) -> float:
"""Get model size in GB"""
try:
total_size = 0
for file in self.model_path.rglob("*"):
if file.is_file():
total_size += file.stat().st_size
return total_size / (1024**3) # Convert to GB
except:
return 0.0
def _get_hardware_info(self) -> str:
"""Get hardware information"""
try:
import torch
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name(0)
return f"GPU: {gpu_name}"
else:
return "CPU"
except:
return "Unknown"
def upload_model_files(self) -> bool:
"""Upload model files to Hugging Face Hub with timeout protection"""
try:
logger.info("Uploading model files...")
# Upload all files in the model directory
for file_path in self.model_path.rglob("*"):
if file_path.is_file():
relative_path = file_path.relative_to(self.model_path)
remote_path = str(relative_path)
logger.info(f"Uploading {relative_path}")
try:
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=remote_path,
repo_id=self.repo_id,
token=self.token
)
logger.info(f"β
Uploaded {relative_path}")
except Exception as e:
logger.error(f"β Failed to upload {relative_path}: {e}")
return False
logger.info("β
Model files uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to upload model files: {e}")
return False
def upload_training_results(self, results_path: str) -> bool:
"""Upload training results and logs"""
try:
logger.info("Uploading training results...")
results_files = [
"train_results.json",
"eval_results.json",
"training_config.json",
"training.log"
]
for file_name in results_files:
file_path = Path(results_path) / file_name
if file_path.exists():
logger.info(f"Uploading {file_name}")
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=f"training_results/{file_name}",
repo_id=self.repo_id,
token=self.token
)
logger.info("β
Training results uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to upload training results: {e}")
return False
def create_readme(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> bool:
"""Create and upload README.md"""
try:
logger.info("Creating README.md...")
readme_content = f"""# {self.repo_id.split('/')[-1]}
A fine-tuned SmolLM3 model for text generation tasks.
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{self.repo_id}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_id}")
# Generate text
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Model Information
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
- **Training Steps**: {results.get('total_steps', 'Unknown')}
- **Final Loss**: {results.get('final_loss', 'Unknown')}
- **Dataset Repository**: {self.dataset_repo}
## Training Configuration
```json
{json.dumps(training_config, indent=2)}
```
## Performance Metrics
```json
{json.dumps(results, indent=2)}
```
## Experiment Tracking
Training metrics and configuration are stored in the HF Dataset repository: `{self.dataset_repo}`
## Files
- `model.safetensors.index.json`: Model weights (safetensors format)
- `config.json`: Model configuration
- `tokenizer.json`: Tokenizer configuration
- `training_results/`: Training logs and results
## License
MIT License
"""
# Write README to temporary file
readme_path = Path("temp_readme.md")
with open(readme_path, "w") as f:
f.write(readme_content)
# Upload README
upload_file(
path_or_fileobj=str(readme_path),
path_in_repo="README.md",
token=self.token,
repo_id=self.repo_id
)
# Clean up
readme_path.unlink()
logger.info("β
README.md uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to create README: {e}")
return False
def log_to_trackio(self, action: str, details: Dict[str, Any]):
"""Log push action to Trackio and HF Datasets"""
if self.monitor:
try:
# Log to Trackio
self.monitor.log_metrics({
"push_action": action,
"repo_name": self.repo_id,
"model_size_gb": self._get_model_size(),
"dataset_repo": self.dataset_repo,
**details
})
# Log training summary
self.monitor.log_training_summary({
"model_push": True,
"model_repo": self.repo_id,
"dataset_repo": self.dataset_repo,
"push_date": datetime.now().isoformat(),
**details
})
logger.info(f"β
Logged {action} to Trackio and HF Datasets")
except Exception as e:
logger.error(f"β Failed to log to Trackio: {e}")
def push_model(self, training_config: Optional[Dict[str, Any]] = None,
results: Optional[Dict[str, Any]] = None) -> bool:
"""Complete model push process with HF Datasets integration"""
logger.info(f"π Starting model push to {self.repo_id}")
logger.info(f"π Dataset repository: {self.dataset_repo}")
# Validate model path
if not self.validate_model_path():
return False
# Create repository
if not self.create_repository():
return False
# Load training config and results if not provided
if training_config is None:
training_config = self._load_training_config()
if results is None:
results = self._load_training_results()
# Create and upload model card
model_card = self.create_model_card(training_config, results)
model_card_path = Path("temp_model_card.md")
with open(model_card_path, "w") as f:
f.write(model_card)
try:
upload_file(
path_or_fileobj=str(model_card_path),
path_in_repo="README.md",
repo_id=self.repo_id,
token=self.token
)
finally:
model_card_path.unlink()
# Upload model files
if not self.upload_model_files():
return False
# Upload training results
if results:
self.upload_training_results(str(self.model_path))
# Log to Trackio and HF Datasets
self.log_to_trackio("model_push", {
"model_path": str(self.model_path),
"repo_name": self.repo_name,
"private": self.private,
"training_config": training_config,
"results": results
})
logger.info(f"π Model successfully pushed to: https://huggingface.co/{self.repo_id}")
logger.info(f"π Experiment data stored in: {self.dataset_repo}")
return True
def _load_training_config(self) -> Dict[str, Any]:
"""Load training configuration"""
config_path = self.model_path / "training_config.json"
if config_path.exists():
with open(config_path, "r") as f:
return json.load(f)
return {"model_name": "HuggingFaceTB/SmolLM3-3B"}
def _load_training_results(self) -> Dict[str, Any]:
"""Load training results"""
results_path = self.model_path / "train_results.json"
if results_path.exists():
with open(results_path, "r") as f:
return json.load(f)
return {"final_loss": "Unknown", "total_steps": "Unknown"}
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description='Push trained model to Hugging Face Hub')
# Required arguments
parser.add_argument('model_path', type=str, help='Path to trained model directory')
parser.add_argument('repo_name', type=str, help='Hugging Face repository name (repo-name). Username will be auto-detected from your token.')
# Optional arguments
parser.add_argument('--token', type=str, default=None, help='Hugging Face token')
parser.add_argument('--hf-token', type=str, default=None, help='Hugging Face token (alternative to --token)')
parser.add_argument('--private', action='store_true', help='Make repository private')
parser.add_argument('--trackio-url', type=str, default=None, help='Trackio Space URL for logging')
parser.add_argument('--experiment-name', type=str, default=None, help='Experiment name for Trackio')
parser.add_argument('--dataset-repo', type=str, default=None, help='HF Dataset repository for experiment storage')
parser.add_argument('--author-name', type=str, default=None, help='Author name for model card')
parser.add_argument('--model-description', type=str, default=None, help='Model description for model card')
parser.add_argument('--training-config-type', type=str, default=None, help='Training configuration type')
parser.add_argument('--model-name', type=str, default=None, help='Base model name')
parser.add_argument('--dataset-name', type=str, default=None, help='Dataset name')
parser.add_argument('--batch-size', type=str, default=None, help='Batch size')
parser.add_argument('--learning-rate', type=str, default=None, help='Learning rate')
parser.add_argument('--max-epochs', type=str, default=None, help='Maximum epochs')
parser.add_argument('--max-seq-length', type=str, default=None, help='Maximum sequence length')
parser.add_argument('--trainer-type', type=str, default=None, help='Trainer type')
return parser.parse_args()
def main():
"""Main function"""
args = parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger.info("Starting model push to Hugging Face Hub")
# Initialize pusher
try:
pusher = HuggingFacePusher(
model_path=args.model_path,
repo_name=args.repo_name,
token=args.token,
private=args.private,
trackio_url=args.trackio_url,
experiment_name=args.experiment_name,
dataset_repo=args.dataset_repo,
hf_token=args.hf_token,
author_name=args.author_name,
model_description=args.model_description,
training_config_type=args.training_config_type,
model_name=args.model_name,
dataset_name=args.dataset_name,
batch_size=args.batch_size,
learning_rate=args.learning_rate,
max_epochs=args.max_epochs,
max_seq_length=args.max_seq_length,
trainer_type=args.trainer_type
)
# Push model
success = pusher.push_model()
if success:
logger.info("β
Model push completed successfully!")
logger.info(f"π View your model at: https://huggingface.co/{args.repo_name}")
if args.dataset_repo:
logger.info(f"π View experiment data at: https://huggingface.co/datasets/{args.dataset_repo}")
else:
logger.error("β Model push failed!")
return 1
except Exception as e:
logger.error(f"β Error during model push: {e}")
return 1
return 0
if __name__ == "__main__":
exit(main()) |