Spaces:
Running
Running
File size: 14,223 Bytes
ebe598e d291e63 ebe598e d291e63 ebe598e 93ed7a1 ebe598e d291e63 2da5c04 c417358 d291e63 c417358 d291e63 c417358 d291e63 c417358 d291e63 c417358 2df26a0 c417358 d291e63 c417358 d291e63 c417358 d291e63 c417358 d291e63 c417358 d291e63 c417358 c61ed6b 5d7656c d291e63 ebe598e d291e63 5d7656c d291e63 5d7656c ebe598e d291e63 ebe598e d291e63 c417358 2da5c04 c417358 d291e63 2da5c04 d291e63 ebe598e d291e63 5d7656c d291e63 ebe598e d291e63 75bcdb3 d291e63 ebe598e d291e63 2da5c04 d291e63 2df26a0 75bcdb3 2df26a0 75bcdb3 93ed7a1 75bcdb3 93ed7a1 75bcdb3 ebe598e 75bcdb3 fe5f524 d291e63 ebe598e d291e63 ebe598e d291e63 2df26a0 d291e63 2df26a0 d291e63 2df26a0 d291e63 fd0524b d291e63 5d7656c d291e63 ebe598e d291e63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
#!/usr/bin/env python3
"""
Setup script for Hugging Face Dataset repository for Trackio experiments
"""
import os
import sys
import json
import time
from datetime import datetime
from pathlib import Path
from datasets import Dataset
from typing import Optional, Dict, Any
from huggingface_hub import HfApi, create_repo
import subprocess
def get_username_from_token(token: str) -> Optional[str]:
"""
Get username from HF token using the API.
Args:
token (str): Hugging Face token
Returns:
Optional[str]: Username if successful, None otherwise
"""
try:
# Create API client with token directly
api = HfApi(token=token)
# Get user info
user_info = api.whoami()
username = user_info.get("name", user_info.get("username"))
return username
except Exception as e:
print(f"β Error getting username from token: {e}")
return None
def create_dataset_repository(username: str, dataset_name: str = "trackio-experiments", token: str = None) -> str:
"""
Create a dataset repository on Hugging Face.
Args:
username (str): HF username
dataset_name (str): Name for the dataset repository
token (str): HF token for authentication
Returns:
str: Full repository name (username/dataset_name)
"""
repo_id = f"{username}/{dataset_name}"
try:
# Create the dataset repository
create_repo(
repo_id=repo_id,
repo_type="dataset",
token=token,
exist_ok=True,
private=False # Public dataset for easier sharing
)
print(f"β
Successfully created dataset repository: {repo_id}")
return repo_id
except Exception as e:
if "already exists" in str(e).lower():
print(f"βΉοΈ Dataset repository already exists: {repo_id}")
return repo_id
else:
print(f"β Error creating dataset repository: {e}")
return None
def setup_trackio_dataset(dataset_name: str = None, token: str = None) -> bool:
"""
Set up Trackio dataset repository automatically.
Args:
dataset_name (str): Optional custom dataset name (default: trackio-experiments)
token (str): HF token for authentication
Returns:
bool: True if successful, False otherwise
"""
print("π Setting up Trackio Dataset Repository")
print("=" * 50)
# Get token from parameter, environment, or command line
if not token:
token = os.environ.get('HUGGING_FACE_HUB_TOKEN') or os.environ.get('HF_TOKEN')
# If no token in environment, try command line argument
if not token and len(sys.argv) > 1:
token = sys.argv[1]
if not token:
print("β No HF token found. Please set HUGGING_FACE_HUB_TOKEN environment variable or provide as argument.")
return False
# Get username from token
print("π Getting username from token...")
username = get_username_from_token(token)
if not username:
print("β Could not determine username from token. Please check your token.")
return False
print(f"β
Authenticated as: {username}")
# Use provided dataset name or default
if not dataset_name:
dataset_name = "trackio-experiments"
# Create dataset repository
print(f"π§ Creating dataset repository: {username}/{dataset_name}")
repo_id = create_dataset_repository(username, dataset_name, token)
if not repo_id:
print("β Failed to create dataset repository")
return False
# Set environment variable for other scripts
os.environ['TRACKIO_DATASET_REPO'] = repo_id
print(f"β
Set TRACKIO_DATASET_REPO={repo_id}")
# Add initial experiment data
print("π Adding initial experiment data...")
if add_initial_experiment_data(repo_id, token):
print("β
Successfully added initial experiment data")
else:
print("β οΈ Could not add initial experiment data (this is optional)")
# Add dataset README
print("π Adding dataset README...")
if add_dataset_readme(repo_id, token):
print("β
Successfully added dataset README")
else:
print("β οΈ Could not add dataset README (this is optional)")
print(f"\nπ Dataset setup complete!")
print(f"π Dataset URL: https://huggingface.co/datasets/{repo_id}")
print(f"π§ Repository ID: {repo_id}")
return True
def add_initial_experiment_data(repo_id: str, token: str = None) -> bool:
"""
Add initial experiment data to the dataset using data preservation.
Args:
repo_id (str): Dataset repository ID
token (str): HF token for authentication
Returns:
bool: True if successful, False otherwise
"""
try:
# Get token from parameter or environment
if not token:
token = os.environ.get('HUGGING_FACE_HUB_TOKEN') or os.environ.get('HF_TOKEN')
if not token:
print("β οΈ No token available for uploading data")
return False
# Import dataset manager
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..', 'src'))
from dataset_utils import TrackioDatasetManager
# Initialize dataset manager
dataset_manager = TrackioDatasetManager(repo_id, token)
# Check if dataset already has data
existing_experiments = dataset_manager.load_existing_experiments()
if existing_experiments:
print(f"βΉοΈ Dataset already contains {len(existing_experiments)} experiments, preserving existing data")
# Initial experiment data
initial_experiment = {
'experiment_id': f'exp_demo_{datetime.now().strftime("%Y%m%d_%H%M%S")}',
'name': 'smollm3-finetune-demo',
'description': 'SmolLM3 fine-tuning experiment demo with comprehensive metrics tracking',
'created_at': datetime.now().isoformat(),
'status': 'completed',
'metrics': json.dumps([
{
'timestamp': datetime.now().isoformat(),
'step': 100,
'metrics': {
'loss': 1.15,
'grad_norm': 10.5,
'learning_rate': 5e-6,
'num_tokens': 1000000.0,
'mean_token_accuracy': 0.76,
'epoch': 0.1,
'total_tokens': 1000000.0,
'throughput': 2000000.0,
'step_time': 0.5,
'batch_size': 2,
'seq_len': 4096,
'token_acc': 0.76,
'gpu_memory_allocated': 15.2,
'gpu_memory_reserved': 70.1,
'gpu_utilization': 85.2,
'cpu_percent': 2.7,
'memory_percent': 10.1
}
}
]),
'parameters': json.dumps({
'model_name': 'HuggingFaceTB/SmolLM3-3B',
'max_seq_length': 4096,
'batch_size': 2,
'learning_rate': 5e-6,
'epochs': 3,
'dataset': 'OpenHermes-FR',
'trainer_type': 'SFTTrainer',
'hardware': 'GPU (H100/A100)',
'mixed_precision': True,
'gradient_checkpointing': True,
'flash_attention': True
}),
'artifacts': json.dumps([]),
'logs': json.dumps([
{
'timestamp': datetime.now().isoformat(),
'level': 'INFO',
'message': 'Training started successfully'
},
{
'timestamp': datetime.now().isoformat(),
'level': 'INFO',
'message': 'Model loaded and configured'
},
{
'timestamp': datetime.now().isoformat(),
'level': 'INFO',
'message': 'Dataset loaded and preprocessed'
}
]),
'last_updated': datetime.now().isoformat()
}
# Use dataset manager to safely add the experiment
success = dataset_manager.upsert_experiment(initial_experiment)
if success:
print(f"β
Successfully added initial experiment data to {repo_id}")
final_count = len(dataset_manager.load_existing_experiments())
print(f"π Dataset now contains {final_count} total experiments")
else:
print(f"β Failed to add initial experiment data to {repo_id}")
return False
# Add README template
add_dataset_readme(repo_id, token)
return True
except Exception as e:
print(f"β οΈ Could not add initial experiment data: {e}")
return False
def add_dataset_readme(repo_id: str, token: str) -> bool:
"""
Add README template to the dataset repository.
Args:
repo_id (str): Dataset repository ID
token (str): HF token
Returns:
bool: True if successful, False otherwise
"""
try:
# Read the README template
template_path = os.path.join(os.path.dirname(__file__), '..', '..', 'templates', 'datasets', 'readme.md')
if os.path.exists(template_path):
with open(template_path, 'r', encoding='utf-8') as f:
readme_content = f.read()
else:
# Create a basic README if template doesn't exist
readme_content = f"""---
dataset_info:
features:
- name: experiment_id
dtype: string
- name: name
dtype: string
- name: description
dtype: string
- name: created_at
dtype: string
- name: status
dtype: string
- name: metrics
dtype: string
- name: parameters
dtype: string
- name: artifacts
dtype: string
- name: logs
dtype: string
- name: last_updated
dtype: string
tags:
- trackio
- experiment tracking
- smollm3
- fine-tuning
---
# Trackio Experiments Dataset
This dataset stores experiment tracking data for ML training runs, particularly focused on SmolLM3 fine-tuning experiments with comprehensive metrics tracking.
## Dataset Structure
The dataset contains the following columns:
- **experiment_id**: Unique identifier for each experiment
- **name**: Human-readable name for the experiment
- **description**: Detailed description of the experiment
- **created_at**: Timestamp when the experiment was created
- **status**: Current status (running, completed, failed, paused)
- **metrics**: JSON string containing training metrics over time
- **parameters**: JSON string containing experiment configuration
- **artifacts**: JSON string containing experiment artifacts
- **logs**: JSON string containing experiment logs
- **last_updated**: Timestamp of last update
## Usage
This dataset is automatically used by the Trackio monitoring system to store and retrieve experiment data. It provides persistent storage for experiment tracking across different training runs.
## Integration
The dataset is used by:
- Trackio Spaces for experiment visualization
- Training scripts for logging metrics and parameters
- Monitoring systems for experiment tracking
- SmolLM3 fine-tuning pipeline for comprehensive metrics capture
## Privacy
This dataset is public by default for easier sharing and collaboration. Only non-sensitive experiment data is stored.
## Examples
### Sample Experiment Entry
```json
{{
"experiment_id": "exp_20250720_130853",
"name": "smollm3-finetune-demo",
"description": "SmolLM3 fine-tuning experiment demo",
"created_at": "2025-07-20T13:08:53",
"status": "completed",
"metrics": "{{...}}",
"parameters": "{{...}}",
"artifacts": "[]",
"logs": "{{...}}",
"last_updated": "2025-07-20T13:08:53"
}}
```
This dataset is maintained by the Trackio monitoring system and automatically updated during training runs.
"""
# Upload README to the dataset repository
from huggingface_hub import upload_file
# Create a temporary file with the README content
import tempfile
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding='utf-8') as f:
f.write(readme_content)
temp_file = f.name
try:
upload_file(
path_or_fileobj=temp_file,
path_in_repo="README.md",
repo_id=repo_id,
repo_type="dataset",
token=token,
commit_message="Add dataset README"
)
print(f"β
Successfully added README to {repo_id}")
return True
finally:
# Clean up temporary file
if os.path.exists(temp_file):
os.unlink(temp_file)
except Exception as e:
print(f"β οΈ Could not add README to dataset: {e}")
return False
def main():
"""Main function to set up the dataset."""
# Get token from environment first
token = os.environ.get('HUGGING_FACE_HUB_TOKEN') or os.environ.get('HF_TOKEN')
# If no token in environment, try command line argument
if not token and len(sys.argv) > 1:
token = sys.argv[1]
if not token:
print("β No HF token found. Please set HUGGING_FACE_HUB_TOKEN environment variable or provide as argument.")
sys.exit(1)
# Get dataset name from command line or use default
dataset_name = None
if len(sys.argv) > 2:
dataset_name = sys.argv[2]
# Pass token to setup function
success = setup_trackio_dataset(dataset_name, token)
sys.exit(0 if success else 1)
if __name__ == "__main__":
main() |