Spaces:
Running
Running
File size: 57,045 Bytes
ebe598e 3c37508 ebe598e c417358 ebe598e c2321bb ebe598e c2321bb ebe598e 598357a ebe598e 598357a ebe598e 598357a 0ded6bb 598357a ebe598e 42f4411 ebe598e fcf2981 7181190 59e57ff 0ded6bb 59e57ff ebe598e 59e57ff 0ded6bb 59e57ff 0ded6bb 59e57ff 0ded6bb 59e57ff 0ded6bb 5f8b28d 59e57ff 0ded6bb ebe598e 59e57ff 5f8b28d 59e57ff 5f8b28d 0ded6bb 5f8b28d 0ded6bb 59e57ff ebe598e 40fd629 ebe598e 5f8b28d ebe598e 3c37508 ebe598e 3c37508 75bcdb3 3c37508 ebe598e 3c37508 c417358 ebe598e 3c37508 ebe598e 3c37508 75bcdb3 3c37508 ebe598e 598357a 0ded6bb 598357a ebe598e 5f8b28d 598357a ebe598e 0fa6045 5d7656c c23e2f5 665844a 5d7656c d291e63 c61ed6b d291e63 235d769 c61ed6b d291e63 235d769 d291e63 c61ed6b d291e63 235d769 d291e63 c61ed6b d291e63 ebe598e c61ed6b 40fd629 d7d1377 ebe598e 40fd629 ebe598e 5f8b28d ebe598e c417358 ebe598e 40fd629 ebe598e 5d7656c 39db0ca ebe598e 5f8b28d ebe598e ca1f1cd ebe598e fd0524b ebe598e fd0524b ebe598e fd0524b 75bcdb3 fd0524b 75bcdb3 fd0524b 75bcdb3 93ed7a1 75bcdb3 93ed7a1 ebe598e 39db0ca 598357a 39db0ca 5f8b28d c417358 5f8b28d fd0524b 5f8b28d ebe598e 93ed7a1 ebe598e 93ed7a1 ebe598e 93ed7a1 769bb84 ebe598e 769bb84 ebe598e 93ed7a1 ebe598e 93ed7a1 ebe598e 59e57ff ebe598e 93ed7a1 59e57ff 93ed7a1 fd0524b 3c37508 5f8b28d fd0524b 59e57ff 5f8b28d fd0524b fcf2981 59e57ff fcf2981 59e57ff fcf2981 ebe598e 93ed7a1 59e57ff 769bb84 fd0524b 3c37508 fd0524b 59e57ff fd0524b fcf2981 59e57ff fcf2981 59e57ff fcf2981 59e57ff fcf2981 59e57ff fcf2981 ebe598e 5f8b28d 3c37508 5f8b28d 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 36b8703 3c37508 36b8703 3c37508 5f8b28d 36b8703 3c37508 665844a 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 ebe598e 40fd629 75bcdb3 ebe598e 75bcdb3 3c37508 40fd629 ebe598e 59e57ff ebe598e 3c37508 665844a 40fd629 ebe598e 75bcdb3 3c37508 ebe598e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 |
#!/bin/bash
# Interactive SmolLM3 End-to-End Fine-tuning Pipeline
# This script creates a complete finetuning pipeline with user configuration
set -e # Exit on any error
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
PURPLE='\033[0;35m'
CYAN='\033[0;36m'
NC='\033[0m' # No Color
# Function to print colored output
print_status() {
echo -e "${GREEN}โ
$1${NC}"
}
print_warning() {
echo -e "${YELLOW}โ ๏ธ $1${NC}"
}
print_error() {
echo -e "${RED}โ $1${NC}"
}
print_info() {
echo -e "${BLUE}โน๏ธ $1${NC}"
}
print_header() {
echo -e "${PURPLE}๐ $1${NC}"
}
print_step() {
echo -e "${CYAN}๐ $1${NC}"
}
# Function to get user input with default value
get_input() {
local prompt="$1"
local default="$2"
local var_name="$3"
if [ -n "$default" ]; then
read -p "$prompt [$default]: " input
if [ -z "$input" ]; then
input="$default"
fi
else
read -p "$prompt: " input
while [ -z "$input" ]; do
print_error "This field is required!"
read -p "$prompt: " input
done
fi
eval "$var_name=\"$input\""
}
# Function to get secure token input (hidden with stars)
get_secure_token_input() {
local prompt="$1"
local var_name="$2"
local token_type="$3"
echo -n "$prompt: "
# Use -s flag to hide input, -r to not interpret backslashes
read -s -r input
echo # Add newline after hidden input
# Validate that input is not empty
while [ -z "$input" ]; do
print_error "Token is required!"
echo -n "$prompt: "
read -s -r input
echo
done
# Store the token
eval "$var_name=\"$input\""
# Show confirmation with stars
local masked_token="${input:0:4}****${input: -4}"
print_status "$token_type token added: $masked_token"
}
# Function to select from options
select_option() {
local prompt="$1"
local options=("${@:2}")
local var_name="${!#}"
echo "$prompt"
for i in "${!options[@]}"; do
echo " $((i+1)). ${options[$i]}"
done
while true; do
read -p "Enter your choice (1-${#options[@]}): " choice
if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then
eval "$var_name=\"${options[$((choice-1))]}\""
break
else
print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}"
fi
done
}
# Function to validate HF token and get username
validate_hf_token_and_get_username() {
local token="$1"
if [ -z "$token" ]; then
return 1
fi
# Use Python script for validation
local result
if result=$(python3 scripts/validate_hf_token.py "$token" 2>/dev/null); then
# Parse JSON result using a more robust approach
local success=$(echo "$result" | python3 -c "
import sys, json
try:
data = json.load(sys.stdin)
print(data.get('success', False))
except:
print('False')
")
local username=$(echo "$result" | python3 -c "
import sys, json
try:
data = json.load(sys.stdin)
print(data.get('username', ''))
except:
print('')
")
local error=$(echo "$result" | python3 -c "
import sys, json
try:
data = json.load(sys.stdin)
print(data.get('error', 'Unknown error'))
except:
print('Failed to parse response')
")
if [ "$success" = "True" ] && [ -n "$username" ]; then
HF_USERNAME="$username"
return 0
else
print_error "Token validation failed: $error"
return 1
fi
else
print_error "Failed to run token validation script. Make sure huggingface_hub is installed."
return 1
fi
}
# Function to show training configurations (optionally filtered by family)
show_training_configs() {
local family="$1" # Optional: "SmolLM3" or "GPT-OSS"
echo ""
print_header "Available Training Configurations"
echo "======================================"
echo ""
if [ -z "$family" ] || [ "$family" = "SmolLM3" ]; then
echo "=== SmolLM3 Configurations ==="
echo "1. Basic Training (Default)"
echo " - Model: SmolLM3-3B"
echo " - Dataset: SmolTalk"
echo " - Epochs: 3"
echo " - Batch Size: 2"
echo " - Learning Rate: 5e-6"
echo ""
echo "2. H100 Lightweight (Rapid)"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR (80K samples)"
echo " - Epochs: 1"
echo " - Batch Size: 16"
echo " - Learning Rate: 8e-6"
echo " - Sequence Length: 8192"
echo " - Optimized for H100 rapid training"
echo ""
echo "3. A100 Large Scale"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR"
echo " - Epochs: 1.3 passes"
echo " - Batch Size: 8"
echo " - Learning Rate: 5e-6"
echo " - Sequence Length: 8192"
echo ""
echo "4. Multiple Passes"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR"
echo " - Epochs: 4 passes"
echo " - Batch Size: 6"
echo " - Learning Rate: 3e-6"
echo " - Sequence Length: 8192"
echo ""
fi
if [ -z "$family" ] || [ "$family" = "GPT-OSS" ]; then
echo "=== GPT-OSS Configurations ==="
echo "1. GPT-OSS Basic Training"
echo " - Model: openai/gpt-oss-20b"
echo " - Dataset: Multilingual-Thinking"
echo " - Epochs: 1"
echo " - Batch Size: 4"
echo " - Learning Rate: 2e-4"
echo " - LoRA + MXFP4 Quantization"
echo " - Optimized for multilingual reasoning"
echo ""
echo "2. GPT-OSS H100 Optimized"
echo " - Model: openai/gpt-oss-20b"
echo " - Dataset: Multilingual-Thinking"
echo " - Epochs: 2"
echo " - Batch Size: 8"
echo " - Learning Rate: 3e-4"
echo " - Enhanced LoRA (rank 16)"
echo " - Optimized for H100 performance"
echo ""
echo "3. GPT-OSS Multilingual Reasoning"
echo " - Model: openai/gpt-oss-20b"
echo " - Dataset: Multilingual-Thinking"
echo " - Epochs: 1"
echo " - Batch Size: 4"
echo " - Learning Rate: 2e-4"
echo " - Specialized for reasoning tasks"
echo " - Supports 10+ languages"
echo ""
echo "4. GPT-OSS Memory Optimized"
echo " - Model: openai/gpt-oss-20b"
echo " - Dataset: Multilingual-Thinking"
echo " - Epochs: 1"
echo " - Batch Size: 1 (effective 16 with accumulation)"
echo " - Learning Rate: 2e-4"
echo " - 4-bit quantization + reduced LoRA"
echo " - Optimized for limited GPU memory"
echo ""
echo "5. GPT-OSS OpenHermes-FR (Recommended)"
echo " - Model: openai/gpt-oss-20b"
echo " - Dataset: legmlai/openhermes-fr (800K French examples)"
echo " - Epochs: 1.5"
echo " - Batch Size: 6 (effective 36 with accumulation)"
echo " - Learning Rate: 2.5e-4"
echo " - Optimized for French language training"
echo " - Quality filtering enabled"
echo ""
echo "6. GPT-OSS OpenHermes-FR Memory Optimized"
echo " - Model: openai/gpt-oss-20b"
echo " - Dataset: legmlai/openhermes-fr (200K samples)"
echo " - Epochs: 1"
echo " - Batch Size: 2 (effective 32 with accumulation)"
echo " - Learning Rate: 2e-4"
echo " - Native MXFP4 quantization"
echo " - Memory optimized for 40-80GB GPUs"
echo " - Harmony format compatible"
echo ""
echo "7. GPT-OSS Custom Dataset"
echo " - Model: openai/gpt-oss-20b"
echo " - Dataset: User-defined (fully customizable)"
echo " - Epochs: Configurable"
echo " - Batch Size: Configurable"
echo " - Learning Rate: Configurable"
echo " - Maximum flexibility with all parameters"
echo ""
echo "8. GPT-OSS Medical o1 SFT (Reasoning)"
echo " - Model: openai/gpt-oss-20b"
echo " - Dataset: FreedomIntelligence/medical-o1-reasoning-SFT"
echo " - Format: Question | Complex_CoT | Response"
echo " - Harmony formatting with optional system/developer messages"
echo ""
fi
}
# Function to get training configuration
get_training_config() {
local config_type="$1"
case "$config_type" in
"Basic Training")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=3
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
LEARNING_RATE=5e-6
MAX_SEQ_LENGTH=4096
CONFIG_FILE="config/train_smollm3.py"
;;
"H100 Lightweight (Rapid)")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=1
BATCH_SIZE=16
GRADIENT_ACCUMULATION_STEPS=4
LEARNING_RATE=8e-6
MAX_SEQ_LENGTH=8192
DATASET_SAMPLE_SIZE=80000
CONFIG_FILE="config/train_smollm3_h100_lightweight.py"
;;
"A100 Large Scale")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=1
BATCH_SIZE=8
GRADIENT_ACCUMULATION_STEPS=16
LEARNING_RATE=5e-6
MAX_SEQ_LENGTH=8192
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py"
;;
"Multiple Passes")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=4
BATCH_SIZE=6
GRADIENT_ACCUMULATION_STEPS=20
LEARNING_RATE=3e-6
MAX_SEQ_LENGTH=8192
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py"
;;
"GPT-OSS Basic Training")
MODEL_NAME="openai/gpt-oss-20b"
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking"
MAX_EPOCHS=1
BATCH_SIZE=4
GRADIENT_ACCUMULATION_STEPS=4
LEARNING_RATE=2e-4
MAX_SEQ_LENGTH=2048
CONFIG_FILE="config/train_gpt_oss_basic.py"
;;
"GPT-OSS H100 Optimized")
MODEL_NAME="openai/gpt-oss-20b"
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking"
MAX_EPOCHS=2
BATCH_SIZE=8
GRADIENT_ACCUMULATION_STEPS=2
LEARNING_RATE=3e-4
MAX_SEQ_LENGTH=4096
CONFIG_FILE="config/train_gpt_oss_h100_optimized.py"
;;
"GPT-OSS Multilingual Reasoning")
MODEL_NAME="openai/gpt-oss-20b"
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking"
MAX_EPOCHS=1
BATCH_SIZE=4
GRADIENT_ACCUMULATION_STEPS=4
LEARNING_RATE=2e-4
MAX_SEQ_LENGTH=2048
CONFIG_FILE="config/train_gpt_oss_multilingual_reasoning.py"
;;
"GPT-OSS Memory Optimized")
MODEL_NAME="openai/gpt-oss-20b"
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking"
MAX_EPOCHS=1
BATCH_SIZE=1
GRADIENT_ACCUMULATION_STEPS=16
LEARNING_RATE=2e-4
MAX_SEQ_LENGTH=1024
CONFIG_FILE="config/train_gpt_oss_memory_optimized.py"
;;
"GPT-OSS OpenHermes-FR (Recommended)")
MODEL_NAME="openai/gpt-oss-20b"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=1.5
BATCH_SIZE=6
GRADIENT_ACCUMULATION_STEPS=6
LEARNING_RATE=2.5e-4
MAX_SEQ_LENGTH=3072
CONFIG_FILE="config/train_gpt_oss_openhermes_fr.py"
;;
"GPT-OSS OpenHermes-FR Memory Optimized")
MODEL_NAME="openai/gpt-oss-20b"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=1
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=16
LEARNING_RATE=2e-4
MAX_SEQ_LENGTH=1024
CONFIG_FILE="config/train_gpt_oss_openhermes_fr_memory_optimized.py"
;;
"GPT-OSS Medical o1 SFT (Reasoning)")
MODEL_NAME="openai/gpt-oss-20b"
DATASET_NAME="FreedomIntelligence/medical-o1-reasoning-SFT"
MAX_EPOCHS=1
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
LEARNING_RATE=2e-4
MAX_SEQ_LENGTH=2048
CONFIG_FILE="config/train_gpt_oss_medical_o1_sft.py"
generate_medical_o1_sft_config
;;
"GPT-OSS Custom Dataset")
MODEL_NAME="openai/gpt-oss-20b"
DATASET_NAME="legmlai/openhermes-fr" # Will be customizable
MAX_EPOCHS=1
BATCH_SIZE=4
GRADIENT_ACCUMULATION_STEPS=4
LEARNING_RATE=2e-4
MAX_SEQ_LENGTH=2048
CONFIG_FILE="config/train_gpt_oss_custom.py"
get_custom_dataset_config
;;
"Custom Configuration")
get_custom_config
;;
esac
}
# Function to get custom dataset configuration
get_custom_dataset_config() {
print_step "GPT-OSS Custom Configuration"
echo "======================================"
echo "Configure your GPT-OSS training:"
echo ""
# Dataset Configuration
print_info "๐ Dataset Configuration"
get_input "Dataset name (HuggingFace format: username/dataset)" "legmlai/openhermes-fr" DATASET_NAME
get_input "Dataset split" "train" DATASET_SPLIT
echo ""
echo "Dataset format options:"
echo "1. OpenHermes-FR (prompt + accepted_completion fields)"
echo "2. Messages format (chat conversations)"
echo "3. Text format (plain text field)"
echo "4. Medical o1 SFT (Question | Complex_CoT | Response)"
echo "5. Custom format (specify field names)"
echo ""
select_option "Select dataset format:" "OpenHermes-FR" "Messages format" "Text format" "Medical o1 SFT" "Custom format" DATASET_FORMAT
case "$DATASET_FORMAT" in
"OpenHermes-FR")
INPUT_FIELD="prompt"
TARGET_FIELD="accepted_completion"
DATASET_FORMAT_CODE="openhermes_fr"
FILTER_BAD_ENTRIES="true"
;;
"Messages format")
INPUT_FIELD="messages"
TARGET_FIELD=""
DATASET_FORMAT_CODE="messages"
FILTER_BAD_ENTRIES="false"
;;
"Text format")
INPUT_FIELD="text"
TARGET_FIELD=""
DATASET_FORMAT_CODE="text"
FILTER_BAD_ENTRIES="false"
;;
"Medical o1 SFT")
INPUT_FIELD="Question"
TARGET_FIELD="Response"
DATASET_FORMAT_CODE="medical_o1_sft"
FILTER_BAD_ENTRIES="false"
# Field mappings and prefixes
get_input "Question field name" "Question" MED_Q_FIELD
get_input "Reasoning field name" "Complex_CoT" MED_REASON_FIELD
get_input "Response field name" "Response" MED_RESP_FIELD
get_input "Reason prefix (before reasoning)" "Reasoning: " MED_REASON_PREFIX
get_input "Answer prefix (before final answer)" "Final Answer: " MED_ANSWER_PREFIX
;;
"Custom format")
get_input "Input field name" "prompt" INPUT_FIELD
get_input "Target field name (leave empty if not needed)" "accepted_completion" TARGET_FIELD
DATASET_FORMAT_CODE="custom"
get_input "Filter bad entries? (true/false)" "false" FILTER_BAD_ENTRIES
;;
esac
# Optional Harmony context
echo ""
print_info "๐ฌ Harmony Context (optional)"
get_input "System message" "You are GPT-Tonic, a large language model trained by TonicAI." SYSTEM_MESSAGE
get_input "Developer message" "You are an intelligent assistant that can answer customer service queries" DEVELOPER_MESSAGE
get_input "Model identity/persona (used in chat_template_kwargs.model_identity)" "You are GPT-Tonic, a large language model trained by TonicAI." MODEL_IDENTITY
# Dataset Filtering Options
echo ""
print_info "๐ Dataset Filtering Options"
get_input "Maximum samples to use (leave empty for all)" "" MAX_SAMPLES
get_input "Minimum sequence length" "10" MIN_LENGTH
get_input "Maximum sequence length (leave empty for auto)" "" MAX_LENGTH
# Training Hyperparameters
echo ""
print_info "โ๏ธ Training Hyperparameters"
get_input "Number of epochs" "1.0" NUM_EPOCHS
get_input "Batch size per device" "4" BATCH_SIZE
get_input "Gradient accumulation steps" "4" GRAD_ACCUM_STEPS
get_input "Learning rate" "2e-4" LEARNING_RATE
get_input "Minimum learning rate" "2e-5" MIN_LR
get_input "Weight decay" "0.01" WEIGHT_DECAY
get_input "Warmup ratio" "0.03" WARMUP_RATIO
# Sequence Length
echo ""
print_info "๐ Sequence Configuration"
get_input "Maximum sequence length" "2048" MAX_SEQ_LENGTH
# LoRA Configuration
echo ""
print_info "๐๏ธ LoRA Configuration"
get_input "LoRA rank" "16" LORA_RANK
get_input "LoRA alpha" "32" LORA_ALPHA
get_input "LoRA dropout" "0.05" LORA_DROPOUT
# Memory & Performance
echo ""
print_info "๐พ Memory & Performance"
select_option "Mixed precision:" "BF16 (recommended)" "FP16" "FP32" MIXED_PRECISION
get_input "Data loading workers" "4" NUM_WORKERS
select_option "Quantization:" "MXFP4 (default)" "4-bit BNB" "None" QUANTIZATION_TYPE
# Advanced Options
echo ""
echo "Advanced options (press Enter for defaults):"
get_input "Max gradient norm" "1.0" MAX_GRAD_NORM
get_input "Logging steps" "10" LOGGING_STEPS
get_input "Evaluation steps" "100" EVAL_STEPS
get_input "Save steps" "500" SAVE_STEPS
# Update the custom config file with user's choices
update_enhanced_gpt_oss_config
}
# Function to materialize a default Medical o1 SFT config file
generate_medical_o1_sft_config() {
print_info "Ensuring medical o1 SFT configuration exists..."
if [ -f "config/train_gpt_oss_medical_o1_sft.py" ]; then
print_status "Medical o1 SFT config already present"
return
fi
cat > config/train_gpt_oss_medical_o1_sft.py << 'EOF'
"""
Auto-generated placeholder. A richer version will be imported at runtime.
"""
from config.train_gpt_oss_medical_o1_sft import config # reuse main config
EOF
print_status "Medical o1 SFT config placeholder created"
}
# Function to get custom configuration
get_custom_config() {
print_step "Custom Configuration Setup"
echo "============================="
get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME
get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME
get_input "Number of epochs" "3" MAX_EPOCHS
get_input "Batch size" "2" BATCH_SIZE
get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS
get_input "Learning rate" "5e-6" LEARNING_RATE
get_input "Max sequence length" "4096" MAX_SEQ_LENGTH
# Select config file based on dataset
if [[ "$DATASET_NAME" == *"openhermes"* ]]; then
CONFIG_FILE="config/train_smollm3_openhermes_fr.py"
else
CONFIG_FILE="config/train_smollm3.py"
fi
}
# Function to update enhanced GPT-OSS config with user choices
update_enhanced_gpt_oss_config() {
print_info "Generating enhanced custom GPT-OSS configuration..."
# Process mixed precision setting
case "$MIXED_PRECISION" in
"BF16 (recommended)")
FP16="False"
BF16="True"
;;
"FP16")
FP16="True"
BF16="False"
;;
"FP32")
FP16="False"
BF16="False"
;;
esac
# Process quantization setting
case "$QUANTIZATION_TYPE" in
"MXFP4 (default)")
USE_QUANTIZATION="True"
QUANTIZATION_CONFIG='{"dequantize": True, "load_in_4bit": False}'
;;
"4-bit BNB")
USE_QUANTIZATION="True"
QUANTIZATION_CONFIG='{"dequantize": False, "load_in_4bit": True, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}'
;;
"None")
USE_QUANTIZATION="False"
QUANTIZATION_CONFIG='{"dequantize": False, "load_in_4bit": False}'
;;
esac
# Safely serialize free-text fields to valid Python literals
SYSTEM_MESSAGE_LITERAL=$(SYSTEM_MESSAGE="$SYSTEM_MESSAGE" python - <<'PY'
import json, os
v = os.environ.get('SYSTEM_MESSAGE', '')
print('None' if not v else json.dumps(v))
PY
)
DEVELOPER_MESSAGE_LITERAL=$(DEVELOPER_MESSAGE="$DEVELOPER_MESSAGE" python - <<'PY'
import json, os
v = os.environ.get('DEVELOPER_MESSAGE', '')
print('None' if not v else json.dumps(v))
PY
)
MODEL_IDENTITY_DEFAULT="You are GPT-Tonic, a large language model trained by TonicAI."
MODEL_IDENTITY_LITERAL=$(MODEL_IDENTITY="${MODEL_IDENTITY:-$MODEL_IDENTITY_DEFAULT}" python - <<'PY'
import json, os
v = os.environ.get('MODEL_IDENTITY', '')
print(json.dumps(v))
PY
)
# Create enhanced config file with all user choices
cat > "$CONFIG_FILE" << EOF
"""
GPT-OSS Enhanced Custom Training Configuration - Generated by launch.sh
Dataset: $DATASET_NAME ($DATASET_FORMAT)
Optimized for: ${DATASET_FORMAT} format with full customization
"""
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig
# Create enhanced config with all customizations
config = GPTOSSEnhancedCustomConfig(
# ============================================================================
# DATASET CONFIGURATION
# ============================================================================
dataset_name="$DATASET_NAME",
dataset_split="$DATASET_SPLIT",
dataset_format="$DATASET_FORMAT_CODE",
input_field="$INPUT_FIELD",
target_field=$(if [ -n "$TARGET_FIELD" ]; then echo "\"$TARGET_FIELD\""; else echo "None"; fi),
filter_bad_entries=$FILTER_BAD_ENTRIES,
max_samples=$(if [ -n "$MAX_SAMPLES" ]; then echo "$MAX_SAMPLES"; else echo "None"; fi),
min_length=$MIN_LENGTH,
max_length=$(if [ -n "$MAX_LENGTH" ]; then echo "$MAX_LENGTH"; else echo "None"; fi),
# ============================================================================
# HARMONY CONFIGURATION
# ============================================================================
system_message=$SYSTEM_MESSAGE_LITERAL,
developer_message=$DEVELOPER_MESSAGE_LITERAL,
use_harmony_format=True,
chat_template_kwargs={
"add_generation_prompt": True,
"tokenize": False,
"auto_insert_role": True,
"reasoning_effort": "medium",
"model_identity": $MODEL_IDENTITY_LITERAL,
"builtin_tools": [],
},
# Medical o1 SFT mapping (ignored unless dataset_format == 'medical_o1_sft')
question_field=$(if [ -n "$MED_Q_FIELD" ]; then echo "\"$MED_Q_FIELD\""; else echo "\"Question\""; fi),
reasoning_field=$(if [ -n "$MED_REASON_FIELD" ]; then echo "\"$MED_REASON_FIELD\""; else echo "\"Complex_CoT\""; fi),
response_field=$(if [ -n "$MED_RESP_FIELD" ]; then echo "\"$MED_RESP_FIELD\""; else echo "\"Response\""; fi),
reason_prefix=$(if [ -n "$MED_REASON_PREFIX" ]; then printf '%s' "\"$MED_REASON_PREFIX\""; else echo "\"Reasoning: \""; fi),
answer_prefix=$(if [ -n "$MED_ANSWER_PREFIX" ]; then printf '%s' "\"$MED_ANSWER_PREFIX\""; else echo "\"Final Answer: \""; fi),
# ============================================================================
# TRAINING HYPERPARAMETERS
# ============================================================================
num_train_epochs=$NUM_EPOCHS,
batch_size=$BATCH_SIZE,
gradient_accumulation_steps=$GRAD_ACCUM_STEPS,
learning_rate=$LEARNING_RATE,
min_lr=$MIN_LR,
weight_decay=$WEIGHT_DECAY,
warmup_ratio=$WARMUP_RATIO,
max_grad_norm=$MAX_GRAD_NORM,
# ============================================================================
# MODEL CONFIGURATION
# ============================================================================
max_seq_length=$MAX_SEQ_LENGTH,
# ============================================================================
# MIXED PRECISION
# ============================================================================
fp16=$FP16,
bf16=$BF16,
# ============================================================================
# LORA CONFIGURATION
# ============================================================================
lora_config={
"r": $LORA_RANK,
"lora_alpha": $LORA_ALPHA,
"lora_dropout": $LORA_DROPOUT,
"target_modules": "all-linear",
"bias": "none",
"task_type": "CAUSAL_LM",
},
# ============================================================================
# QUANTIZATION CONFIGURATION
# ============================================================================
use_quantization=$USE_QUANTIZATION,
quantization_config=$QUANTIZATION_CONFIG,
# ============================================================================
# PERFORMANCE CONFIGURATION
# ============================================================================
dataloader_num_workers=$NUM_WORKERS,
dataloader_pin_memory=True,
group_by_length=True,
# ============================================================================
# LOGGING & EVALUATION
# ============================================================================
logging_steps=$LOGGING_STEPS,
eval_steps=$EVAL_STEPS,
save_steps=$SAVE_STEPS,
# ============================================================================
# RUNTIME CONFIGURATION
# ============================================================================
experiment_name="$EXPERIMENT_NAME",
trackio_url="$TRACKIO_URL",
dataset_repo="$TRACKIO_DATASET_REPO",
enable_tracking=True,
)
EOF
print_status "Enhanced GPT-OSS configuration generated successfully!"
print_info "Configuration saved to: $CONFIG_FILE"
}
# Function to create training configuration file
create_training_config() {
local config_file="$1"
cat > "$config_file" << EOF
"""
SmolLM3 Training Configuration - Generated by launch.sh
Optimized for: $TRAINING_CONFIG_TYPE
"""
from config.train_smollm3 import SmolLM3Config
config = SmolLM3Config(
# Trainer type selection
trainer_type="$TRAINER_TYPE",
# Model configuration
model_name="$MODEL_NAME",
max_seq_length=$MAX_SEQ_LENGTH,
use_flash_attention=True,
use_gradient_checkpointing=True,
# Training configuration
batch_size=$BATCH_SIZE,
gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS,
learning_rate=$LEARNING_RATE,
weight_decay=0.01,
warmup_steps=100,
max_iters=None, # Will be calculated based on epochs
eval_interval=100,
log_interval=10,
save_interval=500,
# Optimizer configuration
optimizer="adamw",
beta1=0.9,
beta2=0.95,
eps=1e-8,
# Scheduler configuration
scheduler="cosine",
min_lr=1e-6,
# Mixed precision
fp16=True,
bf16=False,
# Logging and saving
save_steps=$SAVE_STEPS,
eval_steps=$EVAL_STEPS,
logging_steps=$LOGGING_STEPS,
save_total_limit=3,
# Evaluation
eval_strategy="steps",
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
# Data configuration
dataset_name="$DATASET_NAME",
dataset_split="train",
input_field="prompt",
target_field="completion",
filter_bad_entries=False,
bad_entry_field="bad_entry",
# Chat template configuration
use_chat_template=True,
chat_template_kwargs={
"enable_thinking": False,
"add_generation_prompt": True,
"no_think_system_message": True
},
# Trackio monitoring configuration
enable_tracking=True,
trackio_url="$TRACKIO_URL",
trackio_token=None,
log_artifacts=True,
log_metrics=True,
log_config=True,
experiment_name="$EXPERIMENT_NAME",
# HF Datasets configuration
dataset_repo="$TRACKIO_DATASET_REPO",
monitoring_mode="$MONITORING_MODE",
)
EOF
}
# Main script starts here
print_header "SmolLM3 End-to-End Fine-tuning Pipeline"
echo "=============================================="
echo ""
# Step 1: Get user credentials (write and read tokens)
print_step "Step 1: User Authentication"
echo "================================"
print_info "You'll need two Hugging Face tokens:"
echo "1. Write Token - Used initially for training and creating repositories"
echo "2. Read Token - Will replace the write token in Trackio Space after training for security"
echo ""
print_info "The pipeline will start with the write token in HF_TOKEN, then switch to read token automatically."
echo ""
print_info "Getting Write Token (for training operations)..."
get_secure_token_input "Enter your Hugging Face WRITE token (get from https://huggingface.co/settings/tokens)" HF_WRITE_TOKEN "Write"
print_info "Getting Read Token (for Trackio Space security)..."
get_secure_token_input "Enter your Hugging Face READ token (get from https://huggingface.co/settings/tokens)" HF_READ_TOKEN "Read"
# Validate write token and get username automatically
print_info "Validating write token and getting username..."
if validate_hf_token_and_get_username "$HF_WRITE_TOKEN"; then
print_status "Write token validated successfully"
print_info "Username: $HF_USERNAME"
else
print_error "Invalid write token. Please check your token and try again."
exit 1
fi
# Validate read token belongs to same user
print_info "Validating read token..."
if validate_hf_token_and_get_username "$HF_READ_TOKEN"; then
READ_USERNAME="$HF_USERNAME"
if [ "$READ_USERNAME" = "$HF_USERNAME" ]; then
print_status "Read token validated successfully"
print_info "Both tokens belong to user: $HF_USERNAME"
else
print_error "Token mismatch: write token user ($HF_USERNAME) != read token user ($READ_USERNAME)"
print_error "Both tokens must belong to the same user"
exit 1
fi
else
print_error "Invalid read token. Please check your token and try again."
exit 1
fi
# Set the main HF_TOKEN to write token for training operations (will be switched later)
HF_TOKEN="$HF_WRITE_TOKEN"
# Step 2: Select training configuration
print_step "Step 2: Training Configuration"
echo "=================================="
# 2.1 Select model family first
select_option "Select model family:" "SmolLM3" "GPT-OSS" MODEL_FAMILY
# 2.2 Show only the configurations for the selected family and prompt selection
show_training_configs "$MODEL_FAMILY"
if [ "$MODEL_FAMILY" = "SmolLM3" ]; then
select_option "Select training configuration:" \
"Basic Training" \
"H100 Lightweight (Rapid)" \
"A100 Large Scale" \
"Multiple Passes" \
"Custom Configuration" \
TRAINING_CONFIG_TYPE
else
select_option "Select training configuration:" \
"GPT-OSS Basic Training" \
"GPT-OSS H100 Optimized" \
"GPT-OSS Multilingual Reasoning" \
"GPT-OSS Memory Optimized" \
"GPT-OSS OpenHermes-FR (Recommended)" \
"GPT-OSS OpenHermes-FR Memory Optimized" \
"GPT-OSS Custom Dataset" \
"GPT-OSS Medical o1 SFT (Reasoning)" \
TRAINING_CONFIG_TYPE
fi
get_training_config "$TRAINING_CONFIG_TYPE"
# Step 2.4: Monitoring mode selection
print_step "Step 2.4: Monitoring Mode"
echo "=============================="
echo "Choose how to log your experiment:"
select_option "Select monitoring mode:" \
"Both (Trackio + Dataset)" \
"Trackio only" \
"Dataset only" \
"None (local only)" \
MONITORING_MODE_OPTION
case "$MONITORING_MODE_OPTION" in
"Both (Trackio + Dataset)") MONITORING_MODE="both" ;;
"Trackio only") MONITORING_MODE="trackio" ;;
"Dataset only") MONITORING_MODE="dataset" ;;
"None (local only)") MONITORING_MODE="none" ;;
*) MONITORING_MODE="both" ;;
esac
# Decide which token to use for the Trackio Space secret
# - dataset: read-only token (Space only needs to read datasets)
# - trackio/both: write token until end of training (Space writes to datasets)
# - none: Space is skipped
if [ "$MONITORING_MODE" = "dataset" ]; then
SPACE_DEPLOY_TOKEN="$HF_READ_TOKEN"
else
SPACE_DEPLOY_TOKEN="$HF_WRITE_TOKEN"
fi
# 2.3 Set a family-specific default model description for the model card
if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then
DEFAULT_MODEL_DESCRIPTION="A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following."
else
DEFAULT_MODEL_DESCRIPTION="A fine-tuned SmolLM3-3B model optimized for instruction following and French language tasks."
fi
# Step 3: Get experiment details
print_step "Step 3: Experiment Details"
echo "=============================="
# Derive default experiment name from smolfactory + chosen model family
if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then
FAMILY_SLUG="gpt-oss"
else
FAMILY_SLUG="smollm3"
fi
DEFAULT_EXPERIMENT_NAME="smolfactory-${FAMILY_SLUG}_$(date +%Y%m%d_%H%M%S)"
get_input "Experiment name" "$DEFAULT_EXPERIMENT_NAME" EXPERIMENT_NAME
# Configure model repository name (customizable)
print_info "Setting up model repository name..."
# Ask only for short repo name; we'll prefix with username automatically
DEFAULT_SHORT_REPO="smolfactory-$(date +%Y%m%d)"
get_input "Model repository name (repo only, no username/)" "$DEFAULT_SHORT_REPO" REPO_SHORT
# Build full repo id using detected username
REPO_NAME="$HF_USERNAME/$REPO_SHORT"
print_status "Model repository: $REPO_NAME"
# Automatically create dataset repository
print_info "Setting up Trackio dataset repository automatically..."
# Set default dataset repository
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
# Ask if user wants to customize dataset name
echo ""
echo "Dataset repository options:"
echo "1. Use default name (trackio-experiments)"
echo "2. Customize dataset name"
echo ""
read -p "Choose option (1/2): " dataset_option
if [ "$dataset_option" = "2" ]; then
get_input "Custom dataset name (without username)" "trackio-experiments" CUSTOM_DATASET_NAME
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" "$CUSTOM_DATASET_NAME" 2>/dev/null; then
# Update with the actual repository name from the script
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
print_status "Custom dataset repository created successfully"
else
print_warning "Custom dataset creation failed, using default"
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
print_status "Default dataset repository created successfully"
else
print_warning "Automatic dataset creation failed, using default"
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
fi
fi
else
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
print_status "Dataset repository created successfully"
else
print_warning "Automatic dataset creation failed, using default"
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
fi
fi
# Ensure TRACKIO_DATASET_REPO is always set
if [ -z "$TRACKIO_DATASET_REPO" ]; then
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
print_warning "Dataset repository not set, using default: $TRACKIO_DATASET_REPO"
fi
# Step 3.5: Select trainer type
print_step "Step 3.5: Trainer Type Selection"
echo "===================================="
echo "Select the type of training to perform:"
echo "1. SFT (Supervised Fine-tuning) - Standard instruction tuning"
echo " - Uses SFTTrainer for instruction following"
echo " - Suitable for most fine-tuning tasks"
echo " - Optimized for instruction datasets"
echo ""
echo "2. DPO (Direct Preference Optimization) - Preference-based training"
echo " - Uses DPOTrainer for preference learning"
echo " - Requires preference datasets (chosen/rejected pairs)"
echo " - Optimizes for human preferences"
echo ""
select_option "Select trainer type:" "SFT" "DPO" TRAINER_TYPE
# Convert trainer type to lowercase for the training script
TRAINER_TYPE_LOWER=$(echo "$TRAINER_TYPE" | tr '[:upper:]' '[:lower:]')
# Step 4: Training parameters
print_step "Step 4: Training Parameters"
echo "==============================="
echo "Current configuration:"
echo " Model: $MODEL_NAME"
echo " Dataset: $DATASET_NAME"
echo " Trainer Type: $TRAINER_TYPE"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}"
fi
echo " Epochs: $MAX_EPOCHS"
echo " Batch Size: $BATCH_SIZE"
echo " Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS"
echo " Learning Rate: $LEARNING_RATE"
echo " Sequence Length: $MAX_SEQ_LENGTH"
get_input "Save steps" "500" SAVE_STEPS
get_input "Evaluation steps" "100" EVAL_STEPS
get_input "Logging steps" "10" LOGGING_STEPS
# Step 5: Trackio Space configuration (skip when local-only)
if [ "$MONITORING_MODE" != "none" ]; then
print_step "Step 5: Trackio Space Configuration"
echo "======================================"
get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME
TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME"
else
TRACKIO_SPACE_NAME=""
TRACKIO_URL=""
fi
# Step 6: Confirm configuration
print_step "Step 6: Configuration Summary"
echo "================================="
echo ""
echo "๐ Configuration Summary:"
echo "========================"
echo " User: $HF_USERNAME (auto-detected from token)"
echo " Experiment: $EXPERIMENT_NAME"
echo " Model: $MODEL_NAME"
echo " Dataset: $DATASET_NAME"
echo " Training Config: $TRAINING_CONFIG_TYPE"
echo " Trainer Type: $TRAINER_TYPE"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}"
fi
echo " Epochs: $MAX_EPOCHS"
echo " Batch Size: $BATCH_SIZE"
echo " Learning Rate: $LEARNING_RATE"
echo " Model Repo: $REPO_NAME (auto-generated)"
echo " Author: $AUTHOR_NAME"
echo " Trackio Space: $TRACKIO_URL"
echo " HF Dataset: $TRACKIO_DATASET_REPO"
echo " Monitoring Mode: $MONITORING_MODE"
echo ""
read -p "Proceed with this configuration? (y/N): " confirm
if [[ ! "$confirm" =~ ^[Yy]$ ]]; then
print_info "Configuration cancelled. Exiting."
exit 0
fi
# Step 7: Environment setup
print_step "Step 7: Environment Setup"
echo "============================"
print_info "Installing system dependencies..."
# Check if we're already root or if sudo is available
if [ "$EUID" -eq 0 ]; then
# Already root, no need for sudo
print_info "Running as root, skipping sudo..."
apt-get update
apt-get install -y git curl wget unzip python3-pip python3-venv
elif command -v sudo >/dev/null 2>&1; then
# sudo is available, use it
print_info "Using sudo for system dependencies..."
sudo apt-get update
sudo apt-get install -y git curl wget unzip python3-pip python3-venv
else
# No sudo available, try without it
print_warning "sudo not available, attempting to install without sudo..."
if command -v apt-get >/dev/null 2>&1; then
apt-get update
apt-get install -y git curl wget unzip python3-pip python3-venv
else
print_warning "apt-get not available, skipping system dependencies..."
print_info "Please ensure git, curl, wget, unzip, python3-pip, and python3-venv are installed"
fi
fi
# Set environment variables before creating virtual environment
print_info "Setting up environment variables..."
export HF_TOKEN="$HF_TOKEN"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
print_info "Creating Python virtual environment..."
python3 -m venv smollm3_env
source smollm3_env/bin/activate
# Re-export environment variables in the virtual environment
print_info "Configuring environment variables in virtual environment..."
export HF_TOKEN="$HF_TOKEN"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
print_info "Installing PyTorch with CUDA support..."
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
print_info "Installing project dependencies..."
pip install -r requirements/requirements_core.txt
print_info "Installing additional dependencies..."
pip install trl>=0.7.0
pip install peft>=0.4.0
pip install accelerate>=0.20.0
pip install huggingface-hub>=0.16.0
pip install datasets>=2.14.0
pip install requests>=2.31.0
# Step 8: Authentication setup
print_step "Step 8: Authentication Setup"
echo "================================"
print_info "Setting up Hugging Face token for Python API..."
print_status "HF token configured for Python API usage"
print_info "Username: $HF_USERNAME (auto-detected from token)"
# Verify token is available in the virtual environment
print_info "Verifying token availability in virtual environment..."
if [ -n "$HF_TOKEN" ] && [ -n "$HUGGING_FACE_HUB_TOKEN" ]; then
print_status "โ
Token properly configured in virtual environment"
print_info " HF_TOKEN: ${HF_TOKEN:0:10}...${HF_TOKEN: -4} (currently using WRITE token)"
print_info " HUGGING_FACE_HUB_TOKEN: ${HUGGING_FACE_HUB_TOKEN:0:10}...${HUGGING_FACE_HUB_TOKEN: -4}"
print_info " Will be switched to READ token after training for security"
else
print_error "โ Token not properly configured in virtual environment"
print_error "Please check your token and try again"
exit 1
fi
# Configure git for HF operations
print_step "Step 8.1: Git Configuration"
echo "================================"
print_info "Configuring git for Hugging Face operations..."
# Get user's email for git configuration
get_input "Enter the email you used to register your account at huggingface for git configuration" "" GIT_EMAIL
# Configure git locally (not globally) for this project
git config user.email "$GIT_EMAIL"
git config user.name "$HF_USERNAME"
# Verify git configuration
print_info "Verifying git configuration..."
if git config user.email && git config user.name; then
print_status "Git configured successfully"
print_info " Email: $(git config user.email)"
print_info " Name: $(git config user.name)"
else
print_error "Failed to configure git"
exit 1
fi
# Step 8.2: Author Information for Model Card
print_step "Step 8.2: Author Information"
echo "================================="
print_info "This information will be used in the model card and citation."
get_input "Author name for model card" "$HF_USERNAME" AUTHOR_NAME
print_info "Model description will be used in the model card and repository."
get_input "Model description" "$DEFAULT_MODEL_DESCRIPTION" MODEL_DESCRIPTION
# Step 9: Deploy Trackio Space (automated, skipped for local-only)
if [ "$MONITORING_MODE" != "none" ]; then
print_step "Step 9: Deploying Trackio Space"
echo "==================================="
cd scripts/trackio_tonic
print_info "Deploying Trackio Space ..."
print_info "Space name: $TRACKIO_SPACE_NAME"
print_info "Username will be auto-detected from token"
if [ "$MONITORING_MODE" = "dataset" ]; then
print_info "Deploying with READ token (Space will NOT write to datasets)"
else
print_info "Deploying with WRITE token (Space will write to datasets during training)"
fi
# Ensure environment variables are available for the script
export HF_TOKEN="$SPACE_DEPLOY_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN"
export HF_USERNAME="$HF_USERNAME"
# Run deployment script with automated features (pass deploy token)
python deploy_trackio_space.py "$TRACKIO_SPACE_NAME" "$SPACE_DEPLOY_TOKEN" "$GIT_EMAIL" "$HF_USERNAME" "$TRACKIO_DATASET_REPO"
print_status "Trackio Space deployed: $TRACKIO_URL"
else
print_info "Skipping Trackio Space deployment (monitoring_mode=$MONITORING_MODE)"
fi
if [ "$MONITORING_MODE" != "none" ]; then
# Step 10: Setup HF Dataset (automated) โ required unless local-only
print_step "Step 10: Setting up HF Dataset"
echo "=================================="
cd ../dataset_tonic
print_info "Setting up HF Dataset with automated features..."
print_info "Username will be auto-detected from token"
print_info "Dataset repository: $TRACKIO_DATASET_REPO"
# Ensure environment variables are available for the script
export HF_TOKEN="$HF_WRITE_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
export HF_USERNAME="$HF_USERNAME"
python setup_hf_dataset.py "$HF_TOKEN"
else
print_info "Skipping HF Dataset setup (monitoring_mode=$MONITORING_MODE)"
fi
# Step 11: Configure Trackio (automated) โ skipped for local-only
if [ "$MONITORING_MODE" != "none" ]; then
print_step "Step 11: Configuring Trackio"
echo "================================="
cd ../trackio_tonic
print_info "Configuring Trackio ..."
print_info "Username will be auto-detected from token"
# Ensure environment variables are available for the script
export HF_TOKEN="$SPACE_DEPLOY_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN"
export HF_USERNAME="$HF_USERNAME"
python configure_trackio.py
else
print_info "Skipping Trackio configuration (monitoring_mode=$MONITORING_MODE)"
fi
# Step 12: Training Configuration
print_step "Step 12: Training Configuration"
echo "==================================="
cd ../..
print_info "Using existing configuration file: $CONFIG_FILE"
# Step 13: Dataset Configuration
print_step "Step 13: Dataset Configuration"
echo "=================================="
print_info "Dataset will be loaded directly by src/data.py during training"
print_info "Dataset: $DATASET_NAME"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)"
fi
# Step 14: Training Parameters
print_step "Step 14: Training Parameters"
echo "================================"
print_info "Training parameters will be loaded from configuration file"
print_info "Model: $MODEL_NAME"
print_info "Dataset: $DATASET_NAME"
print_info "Batch size: $BATCH_SIZE"
print_info "Learning rate: $LEARNING_RATE"
# Step 14.5: Define Output Directory
print_step "Step 14.5: Output Directory Configuration"
echo "============================================="
# Define the output directory for training results
OUTPUT_DIR="./outputs/${EXPERIMENT_NAME}_$(date +%Y%m%d_%H%M%S)"
print_info "Training output directory: $OUTPUT_DIR"
# Create output directory
mkdir -p "$OUTPUT_DIR"
print_status "Output directory created: $OUTPUT_DIR"
# Step 15: Start training
print_step "Step 15: Starting Training"
echo "=============================="
print_info "Starting training with configuration: $CONFIG_FILE"
print_info "Experiment: $EXPERIMENT_NAME"
print_info "Output: $OUTPUT_DIR"
print_info "Trackio: $TRACKIO_URL"
# Ensure environment variables are available for training
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_WRITE_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
export HF_USERNAME="$HF_USERNAME"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
export OUTPUT_DIR="$OUTPUT_DIR"
export MONITORING_MODE="$MONITORING_MODE"
# Run the appropriate training script based on model type
if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then
print_info "Using GPT-OSS specialized training script..."
python scripts/training/train_gpt_oss.py \
--config "$CONFIG_FILE" \
--experiment-name "$EXPERIMENT_NAME" \
--output-dir "$OUTPUT_DIR" \
--trackio-url "$TRACKIO_URL" \
--trainer-type "$TRAINER_TYPE_LOWER"
else
print_info "Using standard SmolLM3 training script..."
python scripts/training/train.py \
--config "$CONFIG_FILE" \
--experiment-name "$EXPERIMENT_NAME" \
--output-dir "$OUTPUT_DIR" \
--trackio-url "$TRACKIO_URL" \
--trainer-type "$TRAINER_TYPE_LOWER"
fi
# Step 16: Push model to Hugging Face Hub
print_step "Step 16: Pushing Model to HF Hub"
echo "====================================="
print_info "Pushing model to: $REPO_NAME"
print_info "Checkpoint: $OUTPUT_DIR"
# Ensure environment variables are available for model push
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
export OUTPUT_DIR="$OUTPUT_DIR"
# Run the appropriate push script based on model type
if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then
print_info "Using GPT-OSS specialized push script..."
python scripts/model_tonic/push_gpt_oss_to_huggingface.py "$OUTPUT_DIR" "$REPO_NAME" \
--token "$HF_TOKEN" \
--trackio-url "$TRACKIO_URL" \
--experiment-name "$EXPERIMENT_NAME" \
--dataset-repo "$TRACKIO_DATASET_REPO" \
--author-name "$AUTHOR_NAME" \
--model-description "$MODEL_DESCRIPTION" \
--training-config-type "$TRAINING_CONFIG_TYPE" \
--model-name "$MODEL_NAME" \
--dataset-name "$DATASET_NAME" \
--batch-size "$BATCH_SIZE" \
--learning-rate "$LEARNING_RATE" \
--max-epochs "$MAX_EPOCHS" \
--max-seq-length "$MAX_SEQ_LENGTH" \
--trainer-type "$TRAINER_TYPE"
else
print_info "Using standard SmolLM3 push script..."
python scripts/model_tonic/push_to_huggingface.py "$OUTPUT_DIR" "$REPO_NAME" \
--token "$HF_TOKEN" \
--trackio-url "$TRACKIO_URL" \
--experiment-name "$EXPERIMENT_NAME" \
--dataset-repo "$TRACKIO_DATASET_REPO" \
--author-name "$AUTHOR_NAME" \
--model-description "$MODEL_DESCRIPTION" \
--training-config-type "$TRAINING_CONFIG_TYPE" \
--model-name "$MODEL_NAME" \
--dataset-name "$DATASET_NAME" \
--batch-size "$BATCH_SIZE" \
--learning-rate "$LEARNING_RATE" \
--max-epochs "$MAX_EPOCHS" \
--max-seq-length "$MAX_SEQ_LENGTH" \
--trainer-type "$TRAINER_TYPE"
fi
# Step 16.5: Switch Trackio Space to Read Token (Security) โ only for trackio/both
if [ "$MONITORING_MODE" = "trackio" ] || [ "$MONITORING_MODE" = "both" ]; then
print_step "Step 16.5: Switching to Read Token for Security"
echo "===================================================="
print_info "Switching Trackio Space HF_TOKEN from write token to read token for security..."
print_info "This ensures the space can only read datasets, not write to repositories"
# Ensure environment variables are available for token switch
export HF_TOKEN="$HF_WRITE_TOKEN" # Use write token to update space
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
export HF_USERNAME="$HF_USERNAME"
# Switch HF_TOKEN in Trackio Space from write to read token
cd scripts/trackio_tonic
python switch_to_read_token.py "$HF_USERNAME/$TRACKIO_SPACE_NAME" "$HF_READ_TOKEN" "$HF_WRITE_TOKEN"
if [ $? -eq 0 ]; then
print_status "โ
Successfully switched Trackio Space HF_TOKEN to read token"
print_info "๐ Space now uses read-only permissions for security"
else
print_warning "โ ๏ธ Failed to switch to read token, but continuing with pipeline"
print_info "You can manually switch the token in your Space settings later"
fi
cd ../..
else
print_info "Skipping token switch (monitoring_mode=$MONITORING_MODE)"
fi
# Step 17: Deploy Demo Space
print_step "Step 17: Deploying Demo Space"
echo "=================================="
# Ask user if they want to deploy a demo space
get_input "Do you want to deploy a demo space to test your model? (y/n)" "y" "DEPLOY_DEMO"
if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
print_info "Deploying demo space for model testing..."
# Use main model for demo (no quantization)
DEMO_MODEL_ID="$REPO_NAME"
DEMO_SUBFOLDER=""
# Ensure environment variables are available for demo deployment
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
print_info "Deploying demo space for model: $DEMO_MODEL_ID"
print_info "Using subfolder: $DEMO_SUBFOLDER"
# Additional demo parameters
DEMO_EXTRA_ARGS=""
if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then
# Prebuilt medical example for GPT-OSS demo
DEMO_EXTRA_ARGS="--examples-type medical"
fi
python scripts/deploy_demo_space.py \
--hf-token "$HF_WRITE_TOKEN" \
--space-secret-token "$HF_READ_TOKEN" \
--hf-username "$HF_USERNAME" \
--model-id "$DEMO_MODEL_ID" \
--subfolder "$DEMO_SUBFOLDER" \
--space-name "${REPO_SHORT}-demo" \
--config-file "$CONFIG_FILE" \
$DEMO_EXTRA_ARGS
if [ $? -eq 0 ]; then
DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo"
print_status "โ
Demo space deployed successfully: $DEMO_SPACE_URL"
else
print_warning "โ ๏ธ Demo space deployment failed, but continuing with pipeline"
fi
else
print_info "Skipping demo space deployment"
fi
# Step 18: Create summary report
print_step "Step 18: Creating Summary Report"
echo "===================================="
cat > training_summary.md << EOF
# SmolLM3 Fine-tuning Summary
## Configuration
- **Model**: $MODEL_NAME
- **Dataset**: $DATASET_NAME
- **Experiment**: $EXPERIMENT_NAME
- **Repository**: $REPO_NAME
- **Trackio Space**: $TRACKIO_URL
- **HF Dataset**: $TRACKIO_DATASET_REPO
- **Training Config**: $TRAINING_CONFIG_TYPE
- **Trainer Type**: $TRAINER_TYPE
- **Security**: Single HF_TOKEN switched from write to read token
$(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}"
fi)
## Training Parameters
- **Batch Size**: $BATCH_SIZE
- **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS
- **Learning Rate**: $LEARNING_RATE
- **Max Epochs**: $MAX_EPOCHS
- **Sequence Length**: $MAX_SEQ_LENGTH
## Results
- **Model Repository**: https://huggingface.co/$REPO_NAME
- **Trackio Monitoring**: $TRACKIO_URL
- **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO
- **Security**: Trackio Space HF_TOKEN switched to read-only token for security
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "- **Demo Space**: https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo"
fi)
## Next Steps
1. Monitor training progress in your Trackio Space
2. Check the model repository on Hugging Face Hub
3. Use the model in your applications
4. Share your results with the community
## Files Created
- Training configuration: \`$CONFIG_FILE\`
- Model checkpoint: \`$OUTPUT_DIR/\`
- Training logs: \`training.log\`
- Summary report: \`training_summary.md\`
EOF
print_status "Summary report saved to: training_summary.md"
# Final summary
echo ""
print_header "๐ End-to-End Pipeline Completed Successfully!"
echo "=================================================="
echo ""
echo "๐ Model: https://huggingface.co/$REPO_NAME"
echo "๐ Trackio: $TRACKIO_URL"
echo "๐ Experiment: $EXPERIMENT_NAME"
echo "๐ Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO"
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "๐ฎ Demo: https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo"
fi)
echo ""
echo "๐ Summary report saved to: training_summary.md"
echo ""
echo "๐ Next steps:"
echo "1. Monitor training progress in your Trackio Space"
echo "2. Check the model repository on Hugging Face Hub"
echo "3. Your Trackio Space HF_TOKEN is now secured with read-only permissions"
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "3. Make your huggingface space a ZeroGPU Space & Test your model"
fi)
echo "5. Use the model in your applications"
echo "6. Share your results with the community"
echo ""
print_status "Pipeline completed successfully!" |