Spaces:
Build error
Build error
File size: 11,471 Bytes
2abcc23 8f6035e 385c295 d74ddfc b3758b8 5fda074 163f1eb 8f6035e 5fda074 8f6035e 5fda074 3400476 ad0d74d 5171d49 5fda074 5171d49 5fda074 385c295 5fda074 385c295 5fda074 e71614a 8f6035e ace4204 5fda074 385c295 2abcc23 ace4204 5fda074 385c295 ace4204 cf7c00e fcbecda ace4204 fcbecda ace4204 385c295 ace4204 5fda074 ace4204 fcbecda cf7c00e fcbecda cf7c00e 426a66e 385c295 4cd22b7 5fda074 2abcc23 fcbecda ace4204 385c295 ace4204 200153d 8f6035e 5fda074 cf7c00e 04e92a3 5fda074 cf7c00e ace4204 cf7c00e e71614a 8f6035e 3400476 5fda074 54f1ed7 b2157fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import spaces
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import gradio as gr
import os
import json
import numpy as np
title = """
# 👋🏻Welcome to 🙋🏻♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
description = """
You can use this Space to test out the current model [nvidia/NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1). 🐣a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark (MTEB benchmark)(as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks.
You can also use 📽️Nvidia 🛌🏻Embed V-1 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/NV-Embed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [MultiTonic](https://github.com/MultiTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
tasks = {
'ArguAna': 'Given a claim, find documents that refute the claim',
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
'Natural Language Inference' : 'Retrieve semantically similar text',
'Natural Language Inference' : 'Given a premise, retrieve a hypothesis that is entailed by the premise 20k',
'PAQ, MSMARCO' : 'Given a web search query, retrieve relevant passages that answer the query',
'PAQ, MSMARCO' : 'Given a question, retrieve passages that answer the question',
'SQUAD' : 'Given a question, retrieve Wikipedia passages that answer the question' ,
'StackExchange' : 'Given a question paragraph at StackExchange, retrieve a question duplicated paragraph',
'Natural Question' : 'Given a question, retrieve Wikipedia passages that answer the question',
'BioASQ' : 'Given a question, retrieve detailed question descriptions that are duplicates to the given question',
'STS12, STS22, STSBenchmark' : 'Retrieve semantically similar text.',
'AmazonCounterfactualClassification' : 'Classify a given Amazon customer review text as either counterfactual or not-counterfactual' ,
'AmazonReviewsClassification' : 'Classify the given Amazon review into its appropriate rating category' ,
'Banking77Classification' : 'Given a online banking query, find the corresponding intents',
'EmotionClassification' : 'Classify the emotion expressed in the given Twitter message into one of the six emotions:anger, fear, joy, love, sadness, and surprise',
'ImdbClassification': 'Classify the sentiment expressed in the given movie review text from the IMDB dataset',
'MTOPIntentClassification' : 'Classify the intent of the given utterance in task-oriented conversation',
'ToxicConversationsClassification' : 'Classify the given comments as either toxic or not toxic',
'TweetSentimentExtractionClassification' : 'Classify the sentiment of a given tweet as either positive, negative, or neutral',
'ArxivClusteringP2P' : 'Identify the main and secondary category of Arxiv papers based on the titles and abstracts',
'ArxivClusteringS2S' : 'Identify the main and secondary category of Arxiv papers based on the titles',
'BiorxivClusteringP2P' : 'Identify the main category of Biorxiv papers based on the titles and abstracts' ,
'BiorxivClusteringS2S' : 'Identify the main category of Biorxiv papers based on the titles',
'MedrxivClusteringP2P' : 'Identify the main category of Medrxiv papers based on the titles and abstracts',
'MedrxivClusteringS2S' : 'Identify the main category of Medrxiv papers based on the titles',
'TwentyNewsgroupsClustering' : 'Identify the topic or theme of the given news articles'
}
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define the model and tokenizer globally
tokenizer = AutoTokenizer.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True)
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True).to(device)
# Embedding requests and response queues
embedding_request_queue = queue.Queue()
embedding_response_queue = queue.Queue()
def clear_cuda_cache():
torch.cuda.empty_cache()
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def format_response(embeddings):
return {
"data": [
{
"embedding": embeddings,
"index": 0,
"object": "embedding"
}
],
"model": "e5-mistral",
"object": "list",
"usage": {
"prompt_tokens": 17,
"total_tokens": 17
}
}
def embedding_worker():
while True:
# Wait for an item in the queue
item = embedding_request_queue.get()
if item is None:
break
selected_task, input_text = item
embeddings = compute_embeddings(selected_task, input_text)
formatted_response = format_response(embeddings)
embedding_response_queue.put(formatted_response)
embedding_request_queue.task_done()
clear_cuda_cache()
@spaces.GPU
def compute_embeddings(selected_task, input_text):
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
max_length = 2048
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings_list = embeddings.detach().cpu().numpy().tolist()
clear_cuda_cache()
return embeddings_list
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
# Compute embeddings for each sentence
embeddings1 = compute_embeddings(selected_task, sentence1)
embeddings2 = compute_embeddings(selected_task, sentence2)
embeddings3 = compute_embeddings(selected_task, extra_sentence1)
embeddings4 = compute_embeddings(selected_task, extra_sentence2)
similarity1 = compute_cosine_similarity(embeddings1, embeddings2)
similarity2 = compute_cosine_similarity(embeddings1, embeddings3)
similarity3 = compute_cosine_similarity(embeddings1, embeddings4)
similarity_scores = {"Similarity 1-2": similarity1, "Similarity 1-3": similarity2, "Similarity 1-4": similarity3}
clear_cuda_cache()
return similarity_scores
@spaces.GPU
def compute_cosine_similarity(emb1, emb2):
tensor1 = torch.tensor(emb1).to(device).half()
tensor2 = torch.tensor(emb2).to(device).half()
similarity = F.cosine_similarity(tensor1, tensor2).item()
clear_cuda_cache()
return similarity
def app_interface():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])
with gr.Tab("Sentence Similarity"):
sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'")
sentence2_box = gr.Textbox(label="'Input Sentence' - 1")
extra_sentence1_box = gr.Textbox(label="'Input Sentence' - 2")
extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3")
similarity_button = gr.Button("Compute Similarity")
similarity_output = gr.Textbox(label="📽️Nvidia 🛌🏻Embed Similarity Scores")
similarity_button.click(
fn=compute_similarity,
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
outputs=similarity_output
)
return demo
embedding_worker_thread = threading.Thread(target=embedding_worker, daemon=True)
embedding_worker_thread.start()
app_interface().queue()
app_interface().launch(share=True) |