File size: 21,160 Bytes
dca102c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import time
from collections import deque
from contextlib import nullcontext
from typing import Any, Callable, Deque, Dict, Optional

import torch
from lightning import Callback, Fabric, LightningModule, Trainer
from lightning.fabric.accelerators.xla import _XLA_GREATER_EQUAL_2_1
from lightning.fabric.plugins import (
    BitsandbytesPrecision,
    DoublePrecision,
    FSDPPrecision,
    HalfPrecision,
    MixedPrecision,
    Precision,
    TransformerEnginePrecision,
    XLAPrecision,
)
from lightning.fabric.utilities.rank_zero import rank_zero_only as fabric_rank_zero_only
from lightning.pytorch.plugins import (
    DoublePrecisionPlugin,
    FSDPPrecisionPlugin,
    HalfPrecisionPlugin,
    MixedPrecisionPlugin,
    XLAPrecisionPlugin,
)
from lightning.pytorch.utilities.rank_zero import rank_zero_only as trainer_rank_zero_only
from torch.utils.flop_counter import FlopCounterMode

from tsai_gpt import GPT
from tsai_gpt.utils import num_parameters

GPU_AVAILABLE_FLOPS = {
    # source: https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
    # nvidia publishes spec sheet with a 2x sparsity factor
    "h100-sxm": {
        torch.float64: 67e12,
        torch.float32: 67e12,
        torch.bfloat16: 1.979e15 / 2,
        torch.float16: 1.979e15 / 2,
        torch.int8: 3.958e15 / 2,
    },
    "h100-pcie": {
        torch.float64: 51e12,
        torch.float32: 51e12,
        torch.bfloat16: 1.513e15 / 2,
        torch.float16: 1.513e15 / 2,
        torch.int8: 3.026e15 / 2,
    },
    # source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
    # sxm and pcie have same flop counts
    "a100": {torch.float64: 19.5e12, torch.float32: 19.5e12, torch.bfloat16: 312e12, torch.float16: 312e12},
    # source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/a10-datasheet.pdf
    "a10g": {torch.float32: 31.2e12, torch.bfloat16: 125e12, torch.float16: 125e12},
    # source: https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
    "v100-sxm": {torch.float64: 7.8e12, torch.float32: 15.7e12, torch.float16: 125e12},
    "v100-pcie": {torch.float64: 7e12, torch.float32: 14e12, torch.float16: 112e12},
    "v100s-pcie": {torch.float64: 8.2e12, torch.float32: 16.4e12, torch.float16: 130e12},
    # source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
    # sxm and pcie have same flop counts
    "t4": {torch.float32: 8.1e12, torch.float16: 65e12, torch.int8: 130e12},
    # https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
    "quadro rtx 5000": {torch.float32: 11.2e12, torch.float16: 89.2e12},
}

TPU_AVAILABLE_FLOPS = {
    # flop count for each TPU generation is the same for all precisions
    # since bfloat16 precision is always used for performing matrix operations
    # for more info: https://cloud.google.com/tpu/docs/bfloat16#choosing_bfloat16
    # source: https://arxiv.org/pdf/1907.10701.pdf
    "v2": 45e12,
    # source: https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v3
    "v3": 123e12,
    # source: https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v4
    "v4": 275e12,
    # source: https://cloud.google.com/tpu/docs/v5e-training
    "v5litepod": 197e12,
}


def get_flops_available(device: torch.device, dtype: torch.dtype) -> Optional[float]:
    if device.type == "cuda":
        device_name = torch.cuda.get_device_name(device).lower()
        if "h100" in device_name and "hbm3" in device_name:
            device_name = "h100-sxm"
        elif "h100" in device_name and ("pcie" in device_name or "hbm2e" in device_name):
            device_name = "h100-pcie"
        elif "a100" in device_name:
            device_name = "a100"
        elif "a10g" in device_name:
            device_name = "a10g"
        elif "v100-sxm" in device_name:
            device_name = "v100-sxm"
        elif "v100-pcie" in device_name:
            device_name = "v100-pcie"
        elif "t4" in device_name:
            device_name = "t4"
        elif "quadro rtx 5000" in device_name:
            device_name = "quadro rtx 5000"
        else:
            device_name = None

        if device_name is not None:
            try:
                return int(GPU_AVAILABLE_FLOPS[device_name][dtype])
            except KeyError:
                raise KeyError(
                    f"flop count not found for {device_name} with dtype: {dtype}; "
                    "MFU cannot be calculated and reported."
                )
    elif device.type == "xla":
        if _XLA_GREATER_EQUAL_2_1:
            from torch_xla._internal import tpu
        else:
            from torch_xla.experimental import tpu

        device_name = tpu.get_tpu_env()["TYPE"].lower()
        try:
            return int(TPU_AVAILABLE_FLOPS[device_name])
        except KeyError:
            raise KeyError(
                f"flop count not found for {device_name} with dtype: {dtype}; MFU cannot be calculated and reported."
            )

    return None


# Adapted from https://github.com/mosaicml/composer/blob/f2a2dc820cb75023b9eb7c46fdfd25273712abd0/composer/callbacks/speed_monitor.py


class SpeedMonitorBase:
    """Logs the training throughput and utilization.

    +-------------------------------------+-----------------------------------------------------------+
    | Key                                 | Logged data                                               |
    +=====================================+===========================================================+
    |                                     | Rolling average (over `window_size` most recent           |
    | `throughput/batches_per_sec`        | batches) of the number of batches processed per second    |
    |                                     |                                                           |
    +-------------------------------------+-----------------------------------------------------------+
    |                                     | Rolling average (over `window_size` most recent           |
    | `throughput/samples_per_sec`        | batches) of the number of samples processed per second    |
    |                                     |                                                           |
    +-------------------------------------+-----------------------------------------------------------+
    |                                     | Rolling average (over `window_size` most recent           |
    | `throughput/tokens_per_sec`         | batches) of the number of tokens processed per second.    |
    |                                     | This may include padding depending on dataset             |
    +-------------------------------------+-----------------------------------------------------------+
    |                                     | Estimates flops by `flops_per_batch * batches_per_sec`    |
    | `throughput/flops_per_sec`          |                                                           |
    |                                     |                                                           |
    +-------------------------------------+-----------------------------------------------------------+
    | `throughput/device/batches_per_sec` | `throughput/batches_per_sec` divided by world size        |
    +-------------------------------------+-----------------------------------------------------------+
    | `throughput/device/samples_per_sec` | `throughput/samples_per_sec` divided by world size        |
    +-------------------------------------+-----------------------------------------------------------+
    |                                     | `throughput/tokens_per_sec` divided by world size. This   |
    | `throughput/device/tokens_per_sec`  | may include pad tokens depending on dataset               |
    |                                     |                                                           |
    +-------------------------------------+-----------------------------------------------------------+
    |                                     | `throughput/flops_per_sec` divided by world size. Only    |
    | `throughput/device/flops_per_sec`   | logged when model has attribute `flops_per_batch`         |
    |                                     |                                                           |
    +-------------------------------------+-----------------------------------------------------------+
    |                                     | `throughput/device/flops_per_sec` divided by world size.  |
    | `throughput/device/mfu`             |                                                           |
    |                                     |                                                           |
    +-------------------------------------+-----------------------------------------------------------+
    | `time/train`                        | Total elapsed training time                               |
    +-------------------------------------+-----------------------------------------------------------+
    | `time/val`                          | Total elapsed validation time                             |
    +-------------------------------------+-----------------------------------------------------------+
    | `time/total`                        | Total elapsed time (time/train + time/val)                |
    +-------------------------------------+-----------------------------------------------------------+

    Notes:
        - The implementation assumes that devices are homogeneous as it normalizes by the world size.
        - Tokens/sec, flops/sec and MFU do not account for padding tokens if present. We suggest using samples/sec or
          batches/sec to measure throughput under this circumstance.
        - Be careful when comparing MFU numbers across projects, as this will highly depend on the ``flops_per_batch``.
          There is no widespread, realistic, and reliable implementation to compute them.
          We suggest using our ``measure_flops`` function, but many other works will use ``estimated_flops`` which
          will almost always be an overestimate when compared to the true value.

    Args:
        window_size (int, optional): Number of batches to use for a rolling average of throughput.
            Defaults to 100.
        time_unit (str, optional): Time unit to use for `time` logging. Can be one of
            'seconds', 'minutes', 'hours', or 'days'. Defaults to 'hours'.
    """

    def __init__(
        self,
        flops_available: float,
        log_dict: Callable[[Dict, int], None],
        window_size: int = 100,
        time_unit: str = "hours",
    ):
        self.flops_available = flops_available
        self.log_dict = log_dict

        # Track the batch num samples and wct to compute throughput over a window of batches
        self.history_samples: Deque[int] = deque(maxlen=window_size + 1)
        self.history_wct: Deque[float] = deque(maxlen=window_size + 1)
        self.history_lengths: Deque[int] = deque(maxlen=window_size + 1)
        self.history_flops: Deque[int] = deque(maxlen=window_size + 1)

        self.divider = 1
        if time_unit == "seconds":
            self.divider = 1
        elif time_unit == "minutes":
            self.divider = 60
        elif time_unit == "hours":
            self.divider = 60 * 60
        elif time_unit == "days":
            self.divider = 60 * 60 * 24
        else:
            raise ValueError(
                f'Invalid time_unit: {time_unit}. Must be one of "seconds", "minutes", "hours", or "days".'
            )

        # Keep track of time spent evaluating
        self.total_eval_wct = 0.0
        self.step = -1

    def on_train_batch_end(
        self,
        samples: int,  # total samples seen (per device)
        train_elapsed: float,  # total training time (seconds)
        world_size: int,
        flops_per_batch: Optional[int] = None,  # (per device)
        lengths: Optional[int] = None,  # total length of the samples seen (per device)
    ) -> None:
        self.step += 1
        step = self.step
        metrics = {}

        self.history_samples.append(samples)
        if lengths is not None:
            self.history_lengths.append(lengths)
            # if lengths are passed, there should be as many values as samples
            assert len(self.history_samples) == len(self.history_lengths)
        self.history_wct.append(train_elapsed)
        if len(self.history_wct) == self.history_wct.maxlen:
            elapsed_batches = len(self.history_samples) - 1
            elapsed_samples = self.history_samples[-1] - self.history_samples[0]
            elapsed_wct = self.history_wct[-1] - self.history_wct[0]
            samples_per_sec = elapsed_samples * world_size / elapsed_wct
            dev_samples_per_sec = elapsed_samples / elapsed_wct
            metrics.update(
                {
                    "throughput/batches_per_sec": elapsed_batches * world_size / elapsed_wct,
                    "throughput/samples_per_sec": samples_per_sec,
                    "throughput/device/batches_per_sec": elapsed_batches / elapsed_wct,
                    "throughput/device/samples_per_sec": dev_samples_per_sec,
                }
            )
            if lengths is not None:
                elapsed_lengths = int(self.history_lengths[-1]) - int(self.history_lengths[0])
                avg_length = elapsed_lengths / elapsed_batches
                metrics.update(
                    {
                        "throughput/tokens_per_sec": samples_per_sec * avg_length,
                        "throughput/device/tokens_per_sec": dev_samples_per_sec * avg_length,
                    }
                )

        if flops_per_batch is not None:
            # sum of flops per batch across ranks
            self.history_flops.append(flops_per_batch * world_size)
        if len(self.history_flops) == self.history_flops.maxlen:
            elapsed_flops = sum(self.history_flops) - self.history_flops[0]
            elapsed_wct = self.history_wct[-1] - self.history_wct[0]
            flops_per_sec = elapsed_flops / elapsed_wct
            device_flops_per_sec = flops_per_sec / world_size
            metrics.update(
                {"throughput/flops_per_sec": flops_per_sec, "throughput/device/flops_per_sec": device_flops_per_sec}
            )
            if self.flops_available:
                metrics["throughput/device/mfu"] = device_flops_per_sec / self.flops_available

        metrics.update(
            {
                "time/train": train_elapsed / self.divider,
                "time/val": self.total_eval_wct / self.divider,
                "time/total": (train_elapsed + self.total_eval_wct) / self.divider,
                "samples": samples,
            }
        )

        self.log_dict(metrics, step)

    def eval_end(self, eval_elapsed: float) -> None:
        self.total_eval_wct += eval_elapsed  # seconds


def plugin_to_compute_dtype(plugin: Precision) -> torch.dtype:
    if isinstance(plugin, BitsandbytesPrecision):
        return plugin.dtype
    if isinstance(plugin, (HalfPrecision, MixedPrecision, HalfPrecisionPlugin)):
        return plugin._desired_input_dtype
    if isinstance(plugin, MixedPrecisionPlugin):
        return torch.bfloat16 if plugin.precision == "bf16-mixed" else torch.half
    if isinstance(plugin, (DoublePrecision, DoublePrecisionPlugin)):
        return torch.double
    if isinstance(plugin, (XLAPrecision, XLAPrecisionPlugin)):
        return plugin._desired_dtype
    if isinstance(plugin, TransformerEnginePrecision):
        return torch.int8
    if isinstance(plugin, (FSDPPrecision, FSDPPrecisionPlugin)):
        return plugin.mixed_precision_config.reduce_dtype
    if isinstance(plugin, Precision):
        return torch.float32
    raise NotImplementedError(plugin)


class SpeedMonitorFabric(SpeedMonitorBase):
    def __init__(self, fabric: Fabric, *args: Any, **kwargs: Any) -> None:
        dtype = plugin_to_compute_dtype(fabric.strategy.precision)
        flops_available = get_flops_available(fabric.device, dtype)
        super().__init__(flops_available, fabric.log_dict, *args, **kwargs)

    @fabric_rank_zero_only
    def on_train_batch_end(self, *args: Any, **kwargs: Any) -> None:
        super().on_train_batch_end(*args, **kwargs)


class SpeedMonitorCallback(Callback):
    def __init__(self, length_fn: Callable[[Any], int], batch_size: int, **kwargs: Any) -> None:
        super().__init__()
        self.speed_monitor: Optional[SpeedMonitorBase] = None
        self.speed_monitor_kwargs = kwargs
        self.length_fn = length_fn
        self.batch_size = batch_size
        self.eval_t0: int = 0
        self.train_t0: int = 0
        self.total_lengths: int = 0

    def setup(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> None:
        if self.speed_monitor is not None:
            return  # already setup
        dtype = plugin_to_compute_dtype(trainer.precision_plugin)
        flops_available = get_flops_available(trainer.strategy.root_device, dtype)
        self.speed_monitor = SpeedMonitorBase(flops_available, trainer.logger.log_metrics, **self.speed_monitor_kwargs)

    @trainer_rank_zero_only
    def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
        if trainer.fit_loop._should_accumulate():
            return

        self.train_t0 = time.perf_counter()

    @trainer_rank_zero_only
    def on_train_batch_end(
        self, trainer: Trainer, pl_module: LightningModule, outputs: Any, batch: Any, batch_idx: int
    ) -> None:
        self.total_lengths += self.length_fn(batch)
        if trainer.fit_loop._should_accumulate():
            return
        train_elapsed = time.perf_counter() - self.train_t0
        assert self.speed_monitor is not None
        iter_num = trainer.fit_loop.total_batch_idx
        assert (measured_flops := pl_module.measured_flops) is not None
        self.speed_monitor.on_train_batch_end(
            (iter_num + 1) * self.batch_size,
            train_elapsed,
            # this assumes that device FLOPs are the same and that all devices have the same batch size
            trainer.world_size,
            flops_per_batch=measured_flops,
            lengths=self.total_lengths,
        )

    @trainer_rank_zero_only
    def on_validation_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
        self.eval_t0 = time.perf_counter()

    @trainer_rank_zero_only
    def on_validation_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
        eval_elapsed = time.perf_counter() - self.eval_t0
        assert self.speed_monitor is not None
        self.speed_monitor.eval_end(eval_elapsed)


def flops_per_param(max_seq_length: int, n_layer: int, n_embd: int, n_params: int) -> int:
    flops_per_token = 2 * n_params  # each parameter is used for a MAC (2 FLOPS) per network operation
    # this assumes that all samples have a fixed length equal to the block size
    # which is most likely false during finetuning
    flops_per_seq = flops_per_token * max_seq_length
    attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2))
    return flops_per_seq + attn_flops_per_seq


def estimate_flops(model: GPT) -> int:
    """Measures estimated FLOPs for MFU.

    Refs:
        * https://ar5iv.labs.arxiv.org/html/2205.05198#A1
        * https://ar5iv.labs.arxiv.org/html/2204.02311#A2
    """
    # using all parameters for this is a naive over estimation because not all model parameters actually contribute to
    # this FLOP computation (e.g. embedding, norm). For this reason, the result will be higher by a fixed percentage
    # (~10%) compared to the measured FLOPs, making those lower but more realistic.
    # For a proper estimate, this needs a more fine-grained calculation as in Appendix A of the paper.
    n_trainable_params = num_parameters(model, requires_grad=True)
    trainable_flops = flops_per_param(
        model.max_seq_length, model.config.n_layer, model.config.n_embd, n_trainable_params
    )
    # forward + backward + gradients (assumes no gradient accumulation)
    ops_per_step = 3 if model.training else 1
    n_frozen_params = num_parameters(model, requires_grad=False)
    frozen_flops = flops_per_param(model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params)
    # forward + backward
    frozen_ops_per_step = 2 if model.training else 1
    return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops


def measure_flops(model: GPT, x: torch.Tensor) -> int:
    """Measures real FLOPs for HFU"""
    flop_counter = FlopCounterMode(model, display=False)
    ctx = nullcontext() if model.training else torch.no_grad()
    with ctx, flop_counter:
        y = model(x)
        if model.training:
            y.sum().backward()
    return flop_counter.get_total_flops()