File size: 7,946 Bytes
c9f5f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gradio as gr
from base64 import b64encode

import numpy
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, StableDiffusionPipeline

# For video display:
from matplotlib import pyplot as plt
from pathlib import Path
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os

torch.manual_seed(1)

# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()

# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
    
model_nm = "CompVis/stable-diffusion-v1-4"

output_dir="sd-concept-output"
pipe = StableDiffusionPipeline.from_pretrained(model_nm).to(torch_device)

# Load the autoencoder model which will be used to decode the latents into image space.
vae = pipe.vae
tokenizer = pipe.tokenizer

# Load the tokenizer and text encoder to tokenize and encode the text.
#tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16)
text_encoder =pipe.text_encoder

# The UNet model for generating the latents.
unet = pipe.unet

# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)

# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device);

pipe.load_textual_inversion("sd-concepts-library/madhubani-art")
pipe.load_textual_inversion("sd-concepts-library/line-art")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
pipe.load_textual_inversion("sd-concepts-library/concept-art") 

def pil_to_latent(input_im):
    # Single image -> single latent in a batch (so size 1, 4, 64, 64)
    with torch.no_grad():
        latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
    return 0.18215 * latent.latent_dist.sample()

def latents_to_pil(latents):
    # bath of latents -> list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    images = (image * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]
    return pil_images

# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
    scheduler.set_timesteps(num_inference_steps)
    scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers
    
def saturation_loss(images):
    # Calculate saturation for each pixel in the input image tensor
    max_vals, _ = torch.max(images, dim=1, keepdim=True)
    min_vals, _ = torch.min(images, dim=1, keepdim=True)
    saturation = (max_vals - min_vals) / max_vals.clamp(min=1e-7)  # Avoid division by zero
    
    # Calculate mean saturation across the image
    mean_saturation = torch.mean(saturation, dim=(2, 3))  # Average over width and height
    
    # Calculate the loss as the negative mean saturation (proportional to saturation)
    #loss = torch.abs(saturation - 0.9).mean()
    
    return mean_saturation/10000

def generateImage(prompt, lossScale):
    #prompt = 'a puppy in <cat-toy> style' #@param
    height = 512                        # default height of Stable Diffusion
    width = 512                         # default width of Stable Diffusion
    num_inference_steps = 200  #@param           # Number of denoising steps
    guidance_scale = 8 #@param               # Scale for classifier-free guidance
    generator = torch.manual_seed(32)   # Seed generator to create the inital latent noise
    batch_size = 1
    saturation_loss_Scale = lossScale #@param

    # Prep text
    text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
    with torch.no_grad():
        text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]

    # And the uncond. input as before:
    max_length = text_input.input_ids.shape[-1]
    uncond_input = tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
      (batch_size, unet.in_channels, height // 8, width // 8),
      generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

        # perform CFG
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        #### ADDITIONAL GUIDANCE ###
        if i%5 == 0:
            # Requires grad on the latents
            latents = latents.detach().requires_grad_()

            # Get the predicted x0:
            # latents_x0 = latents - sigma * noise_pred
            latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
            scheduler._step_index = scheduler._step_index - 1

            # Decode to image space
            denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)

            # Calculate loss
            loss = saturation_loss(denoised_images) * saturation_loss_Scale
            #loss = loss.detach().requires_grad_()
            #print('loss.grad_fn = {}'.format(grad_fn))

            # Occasionally print it out
            if i%10==0:
                print(i, 'loss:', loss.item())

            # Get gradient
            cond_grad = torch.autograd.grad(loss, latents)[0]

            # Modify the latents based on this gradient
            latents = latents.detach() - cond_grad * sigma**2

        # Now step with scheduler
        latents = scheduler.step(noise_pred, t, latents).prev_sample


    custom_loss_image = latents_to_pil(latents)[0]
    return custom_loss_image

def inference(imgText, style, customLoss="no"):
    prompt = f'a {imgText} in <{style}> style'
    if (customLoss == "yes") :  
        outImage = generateImage(prompt, 2)
        return outImage
    else:
        outImage = generateImage(prompt, 0)
        return outImage
             

title = "TSAI S20 Assignment: Use a pretrained Sstable Diffusion model and give a demo on its workig"
description = "A simple Gradio interface that accepts a text and style, and generated an image using stable diffusion pipeline"

examples = [["puppy","cat-toy","yes"]] 

demo = gr.Interface(
    inference, 
    inputs = [gr.Textbox("Enter an image you want to generate"), 
              gr.Dropdown(["madhubani-art", "line-art", "cat-toy","concept-art"], label="Choose your style"),
              gr.Radio(["yes", "no"], label="Add custom saturation loss?")
             ], 
    outputs = [gr.Image(shape=(512, 512), label="Generated Image")],
    title = title,
    description = description,
    examples = examples,
)
demo.launch()