File size: 11,651 Bytes
e89bce5
508feab
 
 
 
 
 
e141ac9
 
 
 
 
 
 
 
 
c3d4dea
e141ac9
 
53dda89
e141ac9
 
 
 
 
 
e89bce5
5a0d44d
e89bce5
 
c3d4dea
508feab
 
 
e141ac9
 
e89bce5
9ee2843
c3d4dea
e89bce5
 
e141ac9
 
 
e89bce5
e141ac9
 
e89bce5
c3d4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e89bce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e141ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e89bce5
e141ac9
 
 
c3d4dea
e141ac9
f191662
 
e141ac9
 
 
 
275c364
e141ac9
 
e89bce5
 
 
e141ac9
 
9a0d412
c3d4dea
 
e141ac9
 
 
 
 
 
 
 
 
 
f191662
e141ac9
 
 
 
1da3a54
e141ac9
 
 
 
 
 
 
 
e89bce5
508feab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f2bf6f
e89bce5
 
 
 
 
 
 
 
 
9c81c72
e89bce5
8e5ae95
ccea589
e89bce5
03f7d47
e89bce5
9a0cddd
e89bce5
 
c3d4dea
 
 
 
 
 
 
 
 
e141ac9
 
 
48dabfd
e141ac9
 
 
 
e89bce5
 
 
 
 
 
 
465921b
e89bce5
 
e141ac9
 
 
 
 
 
 
 
e89bce5
f191662
 
 
 
 
 
 
 
 
 
 
 
 
1da3a54
e141ac9
 
 
 
 
 
 
 
 
 
 
cb76fc0
e141ac9
febc809
e141ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
e89bce5
e141ac9
 
 
 
 
 
 
 
e89bce5
e141ac9
 
 
c3d4dea
e141ac9
f191662
 
e141ac9
 
c3d4dea
 
e141ac9
 
e89bce5
b5ec75a
508feab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e141ac9
508feab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is

import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from typing import Tuple

css = '''
.gradio-container{max-width: 570px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

DESCRIPTIONXX = """
    ## REALVISXL V5 + LIGHTNING ⚡
"""

examples = [
    "A studio portrait of a brunette model wearing a overall in front of a natural background  --v 6.0 --style raw",
    "Hamburger in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational ",
    "Chocolate cline wedding cake with candles by stacy simon for stocksy united, in the style of canon af35m, smokey background, stock photo, 1970–present, dark gold  --ar 33:50 --v 5 --iw 2.0 --no watermark"
]

MODEL_OPTIONS = {
    "REALVISXL V5.0": "SG161222/RealVisXL_V5.0",
    # "LIGHTNING V5.0": "SG161222/RealVisXL_V5.0_Lightning",
}

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]

    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

def load_and_prepare_model(model_id):
    pipe = StableDiffusionXLPipeline.from_pretrained(
        model_id,
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        use_safetensors=True,
        add_watermarker=False,
    ).to(device)
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    
    if USE_TORCH_COMPILE:
        pipe.compile()
    
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    
    return pipe

# Preload and compile both models
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}

MAX_SEED = np.iinfo(np.int32).max

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=60, enable_queue=True)
def generate(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = DEFAULT_STYLE_NAME,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,  
    progress=gr.Progress(track_tqdm=True),
):
    global models
    pipe = models[model_choice]
    
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)

    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }

    if use_resolution_binning:
        options["use_resolution_binning"] = True

    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)

    image_paths = [save_image(img) for img in images]
    return image_paths, seed

#def load_predefined_images():
 #   predefined_images = [
   #     "assets/1.png",
  #      "assets/2.png",
    #    "assets/3.png",
      #  "assets/4.png",
     #   "assets/5.png",
      #  "assets/6.png",
       # "assets/7.png",
        #"assets/8.png",
        #"assets/9.png",
    #]
    #return predefined_images


# def load_predefined_images():
#     predefined_images = [
#         "assets2/11.png",
#         "assets2/22.png",
#         "assets2/33.png",
#         "assets2/44.png",
#         "assets2/55.png",
#         "assets2/66.png",
#         "assets2/77.png",
#         "assets2/88.png",
#         "assets2/99.png",
#     ]
#     return predefined_image


with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTIONXX)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button = gr.Button("Run", scale=0)
    result = gr.Gallery(label="Result", columns=1, show_label=False) 

    with gr.Row():
        model_choice = gr.Dropdown(
            label="Model Selection🔻",
            choices=list(MODEL_OPTIONS.keys()),
            value="REALVISXL V5.0"
        )

    with gr.Accordion("Advanced options", open=False, visible=False):
        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )
        num_images = gr.Slider(
            label="Number of Images",
            minimum=1,
            maximum=5,
            step=1,
            value=1,
        )
        with gr.Row():
            with gr.Column(scale=1):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    lines=4,
                    placeholder="Enter a negative prompt",
                    value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                    visible=True,
                )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=6,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=60,
                step=1,
                value=28,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    
    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed, 
            num_images, 
        ],
        outputs=[result, seed],
    )

    #gr.Markdown("### REALVISXL V5.0")
    #predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())

    #gr.Markdown("### LIGHTNING V5.0")
    #predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images. 
    <a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
    </div>
    """) 
    
if __name__ == "__main__":
    demo.queue(max_size=50).launch(show_api=False)