Spaces:
Paused
Paused
File size: 15,336 Bytes
da1ac10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import ast
import argparse
import logging
import numpy as np
import pandas as pd
import json
from datetime import datetime
import os
from PIL import Image
from ml import MLModel
from dl import DLModel
from naive import NaiveModel
import cairosvg
import io
from typing import Dict, Any, List, Tuple
from tqdm import tqdm
from metric import harmonic_mean, VQAEvaluator, AestheticEvaluator
import gc
import torch
# Setup logging
os.makedirs("logs", exist_ok=True)
log_file = f"logs/eval_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Custom JSON encoder to handle NumPy types
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
return super(NumpyEncoder, self).default(obj)
def svg_to_png(svg_code: str, size: tuple = (384, 384)) -> Image.Image:
"""Converts SVG code to a PNG image.
Args:
svg_code (str): SVG code to convert
size (tuple, optional): Output image size. Defaults to (384, 384).
Returns:
PIL.Image.Image: The converted PNG image
"""
try:
png_data = cairosvg.svg2png(bytestring=svg_code.encode('utf-8'), output_width=size[0], output_height=size[1])
return Image.open(io.BytesIO(png_data))
except Exception as e:
logger.error(f"Error converting SVG to PNG: {e}")
# Return a default red circle if conversion fails
default_svg = """<svg width="384" height="384" viewBox="0 0 256 256"><circle cx="128" cy="128" r="64" fill="red" /></svg>"""
png_data = cairosvg.svg2png(bytestring=default_svg.encode('utf-8'), output_width=size[0], output_height=size[1])
return Image.open(io.BytesIO(png_data))
def load_evaluation_data(eval_csv_path: str, descriptions_csv_path: str, index: int = None) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Load evaluation data from CSV files.
Args:
eval_csv_path (str): Path to the evaluation CSV
descriptions_csv_path (str): Path to the descriptions CSV
index (int, optional): Specific index to load. Defaults to None (load all).
Returns:
Tuple[pd.DataFrame, pd.DataFrame]: Loaded evaluation and descriptions dataframes
"""
logger.info(f"Loading evaluation data from {eval_csv_path} and {descriptions_csv_path}")
with tqdm(total=2, desc="Loading data files") as pbar:
eval_df = pd.read_csv(eval_csv_path)
pbar.update(1)
descriptions_df = pd.read_csv(descriptions_csv_path)
pbar.update(1)
if index is not None:
eval_df = eval_df.iloc[[index]]
descriptions_df = descriptions_df.iloc[[index]]
logger.info(f"Selected description at index {index}: {descriptions_df.iloc[0]['description']}")
return eval_df, descriptions_df
def generate_svg(model: Any, description: str, eval_data: pd.Series,
results_dir: str = "results") -> Dict[str, Any]:
"""Generate SVG using the model and save it.
Args:
model (Any): The model to evaluate (MLModel, DLModel, or NaiveModel)
description (str): Text description to generate SVG from
eval_data (pd.Series): Evaluation data with questions, choices, and answers
results_dir (str): Directory to save results to
Returns:
Dict[str, Any]: Generation results
"""
# Create output directories
os.makedirs(results_dir, exist_ok=True)
os.makedirs(f"{results_dir}/svg", exist_ok=True)
os.makedirs(f"{results_dir}/png", exist_ok=True)
model_name = model.__class__.__name__
results = {
"description": description,
"model_type": model_name,
"id": eval_data.get('id', '0'),
"category": description.split(',')[-1] if ',' in description else "unknown",
"timestamp": datetime.now().isoformat(),
}
# Generate SVG
logger.info(f"Generating SVG for description: {description}")
start_time = datetime.now()
svg = model.predict(description)
generation_time = (datetime.now() - start_time).total_seconds()
results["svg"] = svg
results["generation_time_seconds"] = generation_time
# Convert SVG to PNG for visual evaluation
image = svg_to_png(svg)
results["image_width"] = image.width
results["image_height"] = image.height
# Save the SVG and PNG for inspection
output_filename = f"{results['id']}_{model_name}"
with open(f"{results_dir}/svg/{output_filename}.svg", "w") as f:
f.write(svg)
image.save(f"{results_dir}/png/{output_filename}.png")
logger.info(f"Generated SVG for model {model_name} in {generation_time:.2f} seconds")
return results
def evaluate_results(results_list: List[Dict[str, Any]],
vqa_evaluator, aesthetic_evaluator,
results_dir: str = "results") -> List[Dict[str, Any]]:
"""Evaluate generated SVGs.
Args:
results_list (List[Dict[str, Any]]): List of generation results
vqa_evaluator: VQA evaluation model
aesthetic_evaluator: Aesthetic evaluation model
results_dir (str): Directory with saved results
Returns:
List[Dict[str, Any]]: Evaluation results
"""
evaluated_results = []
for result in tqdm(results_list, desc="Evaluating results"):
model_name = result["model_type"]
output_filename = f"{result['id']}_{model_name}"
# Load the PNG image
image = Image.open(f"{results_dir}/png/{output_filename}.png").convert('RGB')
try:
# Parse evaluation data
questions = result.get("questions")
choices = result.get("choices")
answers = result.get("answers")
if not all([questions, choices, answers]):
logger.warning(f"Missing evaluation data for {output_filename}")
continue
# Calculate scores
logger.info(f"Calculating VQA score for model: {model_name}")
vqa_score = vqa_evaluator.score(questions, choices, answers, image)
logger.info(f"Calculating aesthetic score for model: {model_name}")
aesthetic_score = aesthetic_evaluator.score(image)
# Calculate final fidelity score using harmonic mean
instance_score = harmonic_mean(vqa_score, aesthetic_score, beta=0.5)
# Add scores to results
result["vqa_score"] = vqa_score
result["aesthetic_score"] = aesthetic_score
result["fidelity_score"] = instance_score
logger.info(f"VQA Score: {vqa_score:.4f}")
logger.info(f"Aesthetic Score: {aesthetic_score:.4f}")
logger.info(f"Final Fidelity Score: {instance_score:.4f}")
except Exception as e:
logger.error(f"Error during evaluation: {e}")
result["error"] = str(e)
evaluated_results.append(result)
return evaluated_results
def create_model(model_type: str, device: str = "cuda") -> Any:
"""Create a model instance based on model type.
Args:
model_type (str): Type of model ('ml', 'dl', or 'naive')
device (str, optional): Device to run model on. Defaults to "cuda".
Returns:
Any: Model instance
"""
logger.info(f"Creating {model_type.upper()} model on {device}")
with tqdm(total=1, desc=f"Loading {model_type.upper()} model") as pbar:
if model_type.lower() == 'ml':
model = MLModel(device=device)
elif model_type.lower() == 'dl':
model = DLModel(device=device)
elif model_type.lower() == 'naive':
model = NaiveModel(device=device)
else:
raise ValueError(f"Unknown model type: {model_type}")
pbar.update(1)
return model
def main():
parser = argparse.ArgumentParser(description='Evaluate SVG generation models')
# dl is not working and takes too long, so we don't evaluate it by default
parser.add_argument('--models', nargs='+', choices=['ml', 'dl', 'naive'], default=['ml', 'naive'],
help='Models to evaluate (ml, dl, naive)')
parser.add_argument('--index', type=int, default=None,
help='Index of the description to evaluate (default: None, evaluate all)')
parser.add_argument('--device', type=str, default='cuda',
help='Device to run models on (default: cuda)')
parser.add_argument('--eval-csv', type=str, default='data/eval.csv',
help='Path to evaluation CSV (default: data/eval.csv)')
parser.add_argument('--descriptions-csv', type=str, default='data/descriptions.csv',
help='Path to descriptions CSV (default: data/descriptions.csv)')
parser.add_argument('--results-dir', type=str, default='results',
help='Directory to save results (default: results)')
parser.add_argument('--generate-only', action='store_true',
help='Only generate SVGs without evaluation')
parser.add_argument('--evaluate-only', action='store_true',
help='Only evaluate previously generated SVGs')
args = parser.parse_args()
# Create results directory
os.makedirs(args.results_dir, exist_ok=True)
# Load evaluation data
eval_df, descriptions_df = load_evaluation_data(args.eval_csv, args.descriptions_csv, args.index)
# Load cached results or initialize new results
cached_results_file = f"{args.results_dir}/cached_results.json"
if os.path.exists(cached_results_file) and args.evaluate_only:
with open(cached_results_file, 'r') as f:
results = json.load(f)
logger.info(f"Loaded {len(results)} cached results from {cached_results_file}")
else:
results = []
# Step 1: Generate SVGs if not in evaluate-only mode
if not args.evaluate_only:
# Process one model at a time to avoid loading/unloading models repeatedly
for model_type in args.models:
logger.info(f"Processing all descriptions with model: {model_type}")
model = create_model(model_type, args.device)
# Process all descriptions with the current model
for idx, (_, desc_row) in enumerate(descriptions_df.iterrows()):
description = desc_row['description']
eval_data = eval_df.iloc[idx]
logger.info(f"Processing description {idx}: {description}")
# Generate SVG and save
result = generate_svg(model, description, eval_data, args.results_dir)
# Add questions, choices and answers to the result
try:
result["questions"] = ast.literal_eval(eval_data['question'])
result["choices"] = ast.literal_eval(eval_data['choices'])
result["answers"] = ast.literal_eval(eval_data['answer'])
except Exception as e:
logger.error(f"Error parsing evaluation data: {e}")
results.append(result)
logger.info(f"Completed SVG generation for description {idx}")
# Free up memory after processing all descriptions with this model
logger.info(f"Completed all SVG generations for model: {model_type}")
del model
if args.device == 'cuda':
torch.cuda.empty_cache()
gc.collect()
# Save the results for later evaluation
with open(cached_results_file, 'w') as f:
# Remove image data from results to avoid large JSON files
clean_results = []
for result in results:
clean_result = {k: v for k, v in result.items() if k not in ['image', 'svg']}
clean_results.append(clean_result)
json.dump(clean_results, f, indent=2, cls=NumpyEncoder)
logger.info(f"Saved {len(results)} results to {cached_results_file}")
# Exit if only generating
if args.generate_only:
logger.info("Generation completed. Skipping evaluation as requested.")
return
# Step 2: Evaluate the generated SVGs
logger.info("Starting evaluation phase")
# Initialize evaluators
logger.info("Initializing VQA evaluator...")
vqa_evaluator = VQAEvaluator()
logger.info("Initializing Aesthetic evaluator...")
aesthetic_evaluator = AestheticEvaluator()
# Evaluate all results
evaluated_results = evaluate_results(results, vqa_evaluator, aesthetic_evaluator, args.results_dir)
# Save final results
results_file = f"{args.results_dir}/results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
with open(results_file, 'w') as f:
# Remove image data from results to avoid large JSON files
clean_results = []
for result in evaluated_results:
clean_result = {k: v for k, v in result.items() if k not in ['image', 'svg']}
clean_results.append(clean_result)
json.dump(clean_results, f, indent=2, cls=NumpyEncoder)
# Create a summary CSV
summary_data = []
for result in evaluated_results:
summary_data.append({
'model': result['model_type'],
'description': result['description'],
'id': result['id'],
'category': result['category'],
'vqa_score': result.get('vqa_score', float('nan')),
'aesthetic_score': result.get('aesthetic_score', float('nan')),
'fidelity_score': result.get('fidelity_score', float('nan')),
'generation_time': result.get('generation_time_seconds', float('nan')),
'timestamp': result['timestamp']
})
summary_df = pd.DataFrame(summary_data)
summary_file = f"{args.results_dir}/summary_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
summary_df.to_csv(summary_file, index=False)
# Print summary
logger.info("\nEvaluation Summary:")
for result in evaluated_results:
logger.info(f"Model: {result['model_type']}")
logger.info(f"Description: {result['description']}")
logger.info(f"VQA Score: {result.get('vqa_score', 'N/A')}")
logger.info(f"Aesthetic Score: {result.get('aesthetic_score', 'N/A')}")
logger.info(f"Fidelity Score: {result.get('fidelity_score', 'N/A')}")
logger.info(f"Generation Time: {result.get('generation_time_seconds', 'N/A')} seconds")
logger.info("---")
logger.info(f"Results saved to: {results_file}")
logger.info(f"Summary saved to: {summary_file}")
logger.info(f"Log file: {log_file}")
if __name__ == "__main__":
main()
|