Spaces:
Sleeping
Sleeping
File size: 13,044 Bytes
f4bf513 df1e49f f4bf513 e0db607 14e821b 8b2e8bb 5f7beb6 14e821b f4bf513 e6f2697 2866e65 f4bf513 f83d2ce 2bd322b e6f2697 f4bf513 2866e65 8ef1a8f dca011f 4205025 8ef1a8f 4205025 f4bf513 df1e49f f4bf513 df1e49f e6f2697 df1e49f 2866e65 4205025 2866e65 8ef1a8f 2866e65 8ef1a8f f4bf513 df1e49f f4bf513 df1e49f f4bf513 7d4c042 8ef1a8f f4bf513 df1e49f f4bf513 6dadf8f 4205025 2866e65 8ef1a8f 2866e65 8ef1a8f 2866e65 8ef1a8f 2866e65 f4bf513 8ef1a8f d885b74 df1e49f a8ab236 d885b74 8ef1a8f d885b74 8ef1a8f d885b74 a8ab236 d885b74 4e2cb37 d885b74 4e2cb37 a8ab236 8ef1a8f d885b74 2866e65 d885b74 a8ab236 d885b74 a8ab236 dca011f df1e49f e6f2697 df1e49f 6dadf8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
"""
---------------------------------
Booster‑draft helper for Magic: The Gathering, built with Streamlit and ready
for Hugging Face Spaces deployment.
🆕 UI tweaks in this revision
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* **Set selection is now hidden** in an *expander* inside the sidebar—keeps the
layout clean.
* Added a **second tab – “Card rankings”**. When you pick a set, the tab shows a
(stub) ranked list of cards from that set. Replace the `rank_cards()` stub
with real logic later.
"""
from __future__ import annotations
import os, pathlib
# Writable locations --------------------------------------------------
os.environ["HOME"] = "/tmp" # force, not setdefault
os.environ["XDG_CONFIG_HOME"] = "/tmp"
os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
os.environ["STREAMLIT_CACHE_DIR"] = "/tmp/.st-cache"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
os.environ["HF_HOME"] = "/tmp/hf_cache"
for key in ("STREAMLIT_CONFIG_DIR", "STREAMLIT_CACHE_DIR", "HF_HOME"):
pathlib.Path(os.environ[key]).mkdir(parents=True, exist_ok=True)
# --------------------------------------------------------------------
import random
from pathlib import Path
from typing import Dict, List
import pandas as pd
import copy
import numpy as np
import requests
import streamlit as st
from draft_model import DraftModel
SUPPORTED_SETS_PATH = Path("src/helper_files/supported_sets.txt")
@st.cache_resource(show_spinner="Loading draft model …")
def load_model():
return DraftModel()
# --- callbacks ---
def _add_selected_to_deck():
val = st.session_state.get("deck_selectbox")
if val:
add_card("deck", val)
st.session_state["deck_selectbox"] = None # clear selection
st.toast(f"Added to deck: {val}")
def _add_selected_to_pack():
val = st.session_state.get("pack_selectbox")
if val:
success = add_card("pack", val)
st.session_state["pack_selectbox"] = None # clear selection
if success:
st.toast(f"Added to pack: {val}")
#st.rerun()
def _reset_draft_state():
st.session_state["pack"] = []
st.session_state["deck"] = []
st.session_state["undo_stack"] = []
st.session_state["deck_selectbox"] = None
st.session_state["pack_selectbox"] = None
def _on_set_changed():
curr = st.session_state.get("set_code")
prev = st.session_state.get("prev_set_code")
if prev != curr:
_reset_draft_state()
st.session_state["prev_set_code"] = curr
st.toast(f"Switched to set {curr}. Cleared current pack & deck.")
def _pick_card(card: str):
# save undo before mutating
push_undo()
st.session_state["deck"].append(card)
# clear the whole pack and any transient widget values
st.session_state["pack"].clear()
# stop this run so nothing else re-renders with stale UI
if "model" not in st.session_state:
st.session_state.model = load_model() # your class
if "deck" not in st.session_state:
st.session_state.deck: List[str] = []
if "pack" not in st.session_state:
st.session_state.pack: List[str] = []
if "undo_stack" not in st.session_state:
st.session_state.undo_stack: List[str] = []
if "set_code" not in st.session_state:
# choose a default set code that exists in model.cards, e.g., "eoe"
st.session_state.set_code = "EOE"
model = st.session_state.model
@st.cache_data(show_spinner="Reading supported sets …")
def get_supported_sets(path: Path = SUPPORTED_SETS_PATH) -> List[str]:
"""Return a list of legal set codes read from *supported_sets.txt*."""
if path.is_file():
return [ln.strip() for ln in path.read_text().splitlines() if ln.strip()]
return []
@st.cache_data(show_spinner="Calculating P1P1 ...")
def p1p1_ranking(set_code: str):
names, scores = model.get_p1p1(set_code)
df = pd.DataFrame({"card": names, "p1p1_score": scores})
df = df.sort_values("p1p1_score", ascending=False, ignore_index=True)
df.index += 1 # 1-based ranks look nicer
return df
@st.cache_data(show_spinner="Calculating card rankings …")
def rank_cards(deck: List[str], pack: List[str]) -> List[Dict]:
if not deck:
out = model.predict(pack, deck = None)
else:
out = model.predict(pack, deck = deck)
pick = out["pick"]
logits = {pack[i]: score for i, score in enumerate(out["logits"])}
scores = {pack[i]: score for i, score in enumerate(out["scores"])}
return pick, logits, scores
def fetch_card_image(card_name: str) -> str:
r = requests.get(
"https://api.scryfall.com/cards/named",
params={"exact": card_name, "format": "json"},
)
r.raise_for_status()
data = r.json()
if "image_uris" in data:
return data["image_uris"]["normal"]
return data["card_faces"][0]["image_uris"]["normal"]
# -----------------------------------------------------------------------------
# 3. Streamlit UI
# -----------------------------------------------------------------------------
st.set_page_config(page_title="MTG Draft Assistant", page_icon="🃏")
st.title("🃏 MTG Draft Assistant")
# -------- Sidebar ------------------------------------------------------------
with st.sidebar:
st.header("Draft setup")
supported_sets = get_supported_sets()
set_code = st.selectbox(
"Choose a set",
supported_sets,
index=0,
key="set_code",
on_change=_on_set_changed
)
# -------- Main content organised in tabs ------------------------------------
tabs = st.tabs(["Draft", "P1P1 Rankings", "Instructions"])
def add_card(target: str, card: str):
"""target is 'pack' or 'picks'."""
if target == "pack":
if card not in st.session_state["pack"]:
st.session_state[target].append(card)
else:
st.warning(f"{card} is already in the pack.", icon="⚠️")
return False
elif target == "deck":
st.session_state[target].append(card)
return True
def remove_card(target: str, key: str):
lst = st.session_state[target]
idx = next((i for i, c in enumerate(lst) if c == key), None)
if idx is not None:
lst.pop(idx)
def push_undo():
"""Save a snapshot of pack + picks so we can undo one step."""
st.session_state["undo_stack"].append({
"pack": copy.deepcopy(st.session_state["pack"]),
"deck": copy.deepcopy(st.session_state["deck"]),
})
# (optional) cap history
if len(st.session_state["undo_stack"]) > 20:
st.session_state["undo_stack"].pop(0)
def undo_last():
if st.session_state.get("undo_stack"):
snap = st.session_state["undo_stack"].pop()
st.session_state["pack"] = snap["pack"]
st.session_state["deck"] = snap["deck"]
# --- Tab 1: Draft -------------------------------------------------------
draft_area = st.empty()
with tabs[0]:
with draft_area.container():
if st.session_state.get("set_code") == "EOE":
st.warning("The model is not trained for this set. Results may be inaccurate.", icon="⚠️")
if st.session_state["undo_stack"]:
st.button("↩️ Undo last action", on_click=undo_last)
scores = {}
pick = None
if st.session_state["pack"]:
pack = st.session_state["pack"]
deck = st.session_state["deck"]
options = list(model.cards[set_code.lower()].keys())
c1, c2 = st.columns(2)
with c1:
st.subheader("Add to Deck")
deck_sel = st.selectbox(
"Search card (deck)",
options,
index=None,
placeholder="Type to search…",
key="deck_selectbox",
on_change=_add_selected_to_deck, # <- auto-add
)
if st.session_state["deck"]:
# header row
st.button("🗑️ Clear deck", on_click=lambda: st.session_state.update(deck=[]), use_container_width=True)
h1, h2 = st.columns([6, 3])
h1.markdown("**Card**")
h2.markdown("**Remove?**")
for i, card in enumerate(st.session_state["deck"]):
name_col, rm_col = st.columns([6, 2], gap="small")
name_col.write(card)
with rm_col:
if st.button("❌", key=f"rm-deck-{i}", use_container_width=True):
remove_card("deck", card)
st.rerun()
else:
st.caption("Deck is empty.")
with c2:
st.subheader("Add to pack")
pack_sel = st.selectbox(
"Search card (pack)",
options,
index=None,
placeholder="Type to search…",
key="pack_selectbox",
on_change=_add_selected_to_pack, # <- auto-add
)
pack_list = list(st.session_state.get("pack", []))
if not pack_list:
st.caption("Pack is empty.")
else:
try:
pick, logits, scores = rank_cards(deck, pack)
except Exception as e:
st.error(f"Error calculating card rankings: {e}")
pick, logits, scores = None, {}, {}
st.button("🗑️ Clear pack", on_click=lambda: st.session_state.update(pack=[]), use_container_width=True)
h1, h2, h3 = st.columns([6, 2, 3])
h1.markdown("**Card**")
h2.markdown("**Score**")
h3.markdown("**Pick?**")
vals = [scores.get(c) if scores and c in scores else np.nan for c in pack_list]
logits = [logits.get(c) if logits and c in logits else np.nan for c in pack_list]
df_scores = pd.DataFrame({"Card": pack_list, "Score": vals, "Logits": logits})
df_scores = df_scores.sort_values("Score", ascending=False, na_position="last").reset_index(drop=True)
# rows
for i, row in df_scores.iterrows():
card = row["Card"]
score = row["Score"]
logit = row["Logits"]
c1, c2, c3 = st.columns([6, 2, 2], gap="small")
c1.write(card)
tooltip_html = f"""
<div title="{logit:.4f}">
<progress Value="{score}" max="1" style="width: 100%; height: 20px;"></progress>
</div>
"""
c2.markdown(tooltip_html, unsafe_allow_html=True)
with c3:
st.button("✔️",
key=f"pick_btn_{i}",
use_container_width=True,
help="Add to deck & clear pack",
on_click=_pick_card, args=(card,),
)
# --- Tab 2: Card rankings ----------------------------------------------------
with tabs[1]:
st.header("Card rankings for set " + set_code)
if set_code:
try:
df = p1p1_ranking(set_code.lower()) # cached; auto-updates on dropdown change
if not df.empty:
st.dataframe(df, use_container_width=True)
else:
st.info("No P1P1 results returned for this set.")
except Exception as e:
st.error(f"Could not calculate P1P1: {e}")
else:
st.info("Select a set in the sidebar to view P1P1.")
with tabs[2]:
st.header("📖 How to Use MTG Draft Assistant")
st.markdown("""
Welcome to the **MTG Draft Assistant**!
This tool helps you evaluate booster packs and draft the best cards.
### Steps
1. **Choose your set** from the sidebar.
2. **Add cards** to your pack using the search bar on the right.
3. The model will score the cards and suggest the best pick.
4. Click **Pick** to move a card from your pack to your deck.
5. Repeat until your deck is complete.
### Important Notes
The model uses data from 17Lands to score cards based drafts from other players.
Although it is able to make predictions for all cards, data for the most recent set is sometimes
not available, harming the model's performance.
Currently, the model **only** uses how cards are picked, not how they perform in games.
This leads to some cards being evaluated differently, if players pick them highly.
For example, we find that the current model has a bias towards Rares and Mythics, which look splashy.
As the next step, we will filter data based on player and draft performance.
We currently also do not support special guest cards, although these will be added soon.
### Tips
- Hover over a score bar to see the exact value.
---
""")
|