Spaces:
Runtime error
Runtime error
File size: 5,859 Bytes
95261ed 7fd072f 44d964a 95261ed 44d964a 95261ed c0e541b 31f7bdb 95261ed 44d964a 95261ed 01fddc0 31f7bdb 95261ed 44d964a 95261ed 31f7bdb c0e541b 31f7bdb c0e541b 95261ed 7c5d37e 7fd072f 44d964a 7fd072f 7c5d37e 7fd072f 44d964a 7c5d37e 44d964a 7c5d37e 44d964a c0e541b 44d964a c0e541b 95261ed 44d964a 95261ed c0e541b 44d964a 95261ed 31f7bdb c0e541b 95261ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# External programs
import os
from typing import List
import whisper
from src.config import ModelConfig
from src.modelCache import GLOBAL_MODEL_CACHE, ModelCache
class WhisperContainer:
def __init__(self, model_name: str, device: str = None, download_root: str = None,
cache: ModelCache = None, models: List[ModelConfig] = []):
self.model_name = model_name
self.device = device
self.download_root = download_root
self.cache = cache
# Will be created on demand
self.model = None
# List of known models
self.models = models
def get_model(self):
if self.model is None:
if (self.cache is None):
self.model = self._create_model()
else:
model_key = "WhisperContainer." + self.model_name + ":" + (self.device if self.device else '')
self.model = self.cache.get(model_key, self._create_model)
return self.model
def ensure_downloaded(self):
"""
Ensure that the model is downloaded. This is useful if you want to ensure that the model is downloaded before
passing the container to a subprocess.
"""
# Warning: Using private API here
try:
root_dir = self.download_root
model_config = self.get_model_config()
if root_dir is None:
root_dir = os.path.join(os.path.expanduser("~"), ".cache", "whisper")
if self.model_name in whisper._MODELS:
whisper._download(whisper._MODELS[self.model_name], root_dir, False)
else:
# If the model is not in the official list, see if it needs to be downloaded
model_config.download_url(root_dir)
return True
except Exception as e:
# Given that the API is private, it could change at any time. We don't want to crash the program
print("Error pre-downloading model: " + str(e))
return False
def get_model_config(self) -> ModelConfig:
"""
Get the model configuration for the model.
"""
for model in self.models:
if model.name == self.model_name:
return model
return None
def _create_model(self):
print("Loading whisper model " + self.model_name)
model_config = self.get_model_config()
# Note that the model will not be downloaded in the case of an official Whisper model
model_path = model_config.download_url(self.download_root)
return whisper.load_model(model_path, device=self.device, download_root=self.download_root)
def create_callback(self, language: str = None, task: str = None, initial_prompt: str = None, **decodeOptions: dict):
"""
Create a WhisperCallback object that can be used to transcript audio files.
Parameters
----------
language: str
The target language of the transcription. If not specified, the language will be inferred from the audio content.
task: str
The task - either translate or transcribe.
initial_prompt: str
The initial prompt to use for the transcription.
decodeOptions: dict
Additional options to pass to the decoder. Must be pickleable.
Returns
-------
A WhisperCallback object.
"""
return WhisperCallback(self, language=language, task=task, initial_prompt=initial_prompt, **decodeOptions)
# This is required for multiprocessing
def __getstate__(self):
return { "model_name": self.model_name, "device": self.device, "download_root": self.download_root, "models": self.models }
def __setstate__(self, state):
self.model_name = state["model_name"]
self.device = state["device"]
self.download_root = state["download_root"]
self.models = state["models"]
self.model = None
# Depickled objects must use the global cache
self.cache = GLOBAL_MODEL_CACHE
class WhisperCallback:
def __init__(self, model_container: WhisperContainer, language: str = None, task: str = None, initial_prompt: str = None, **decodeOptions: dict):
self.model_container = model_container
self.language = language
self.task = task
self.initial_prompt = initial_prompt
self.decodeOptions = decodeOptions
def invoke(self, audio, segment_index: int, prompt: str, detected_language: str):
"""
Peform the transcription of the given audio file or data.
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor]
The audio file to transcribe, or the audio data as a numpy array or torch tensor.
segment_index: int
The target language of the transcription. If not specified, the language will be inferred from the audio content.
task: str
The task - either translate or transcribe.
prompt: str
The prompt to use for the transcription.
detected_language: str
The detected language of the audio file.
Returns
-------
The result of the Whisper call.
"""
model = self.model_container.get_model()
return model.transcribe(audio, \
language=self.language if self.language else detected_language, task=self.task, \
initial_prompt=self._concat_prompt(self.initial_prompt, prompt) if segment_index == 0 else prompt, \
**self.decodeOptions)
def _concat_prompt(self, prompt1, prompt2):
if (prompt1 is None):
return prompt2
elif (prompt2 is None):
return prompt1
else:
return prompt1 + " " + prompt2 |