Spaces:
Running
Running
File size: 13,627 Bytes
519b5e5 94dbe80 519b5e5 94dbe80 519b5e5 94dbe80 519b5e5 73872db 519b5e5 2bf433c 519b5e5 73872db 519b5e5 94dbe80 519b5e5 94dbe80 73872db 519b5e5 34572d2 519b5e5 73872db 519b5e5 73872db 519b5e5 73872db 94dbe80 73872db 519b5e5 94dbe80 519b5e5 73872db 519b5e5 73872db 519b5e5 94dbe80 519b5e5 94dbe80 73872db 94dbe80 73872db 94dbe80 73872db 94dbe80 73872db 94dbe80 73872db 519b5e5 94dbe80 73872db 94dbe80 73872db 94dbe80 519b5e5 73872db e8c3cc6 73872db 51e28ed 73872db 51e28ed b97ed89 d819007 b97ed89 51e28ed b97ed89 51e28ed b97ed89 51e28ed b97ed89 51e28ed 73872db 51e28ed 73872db 51e28ed 4c65101 cea1007 51e28ed 73872db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
---
title: "PFCdev-web"
author: "Cao Lab"
server: shiny
format:
dashboard:
theme: flatly
logo: https://ZhengTiger.github.io/picx-images-hosting/PFCdev/Logo.3yemp7xp5k.webp
nav-buttons:
- icon: github
href: https://github.com/ZhengTiger/PFC_develop
---
# Home
<p style="font-size: 50px; font-weight: bold; text-align: center;">Single-cell spatiotemporal transcriptome dynamics of mouse prefrontal cortex intratelencephalic neurons during postnatal development</p>
<br>
<img src="https://ZhengTiger.github.io/picx-images-hosting/PFCdev/Figure1A.3yer620cdm.webp" style="width: 100%;">
<br>
<br>
<p style="font-size: 30px; font-weight: bold; text-align: left;">
Summary
</p>
<p style="font-size: 20px; text-align: justify;">
The prefrontal cortex (PFC) is a core regulatory center for higher cognitive functions in the mammalian brain. In early postnatal mice, the PFC remains incompletely mature, particularly the intratelencephalic (IT) neurons located in superficial layers. However, the molecular developmental trajectories and regulatory mechanisms of IT neurons during the critical postnatal period (1-2 weeks) for circuit establishment, remain poorly characterized at single-cell resolution. Here, we performed single-cell RNA sequencing analysis on mouse PFC isolated at different developmental time points, and integrated with spatial transcriptomic data. Our study systematically deciphered the spatiotemporal transcriptome dynamics of mouse PFC during postnatal development, with particular emphasis on the heterogeneity of IT neurons. We identified dynamically expressed genes during postnatal development, including cadherin and axon guidance molecule genes, as well as specific transcriptional regulators that control the maturation of IT neurons in different layers. Furthermore, we also revealed that glial cells play crucial regulatory roles in IT neuron development through specific signaling pathways. Our study provides a comprehensive single-cell atlas of postnatal mouse PFC development, offering important insights into the mechanisms of neural development and circuit assembly in PFC.
</p>
<br>
<p style="font-size: 30px; font-weight: bold; text-align: left;">
Interactively exploring our data
</p>
<p style="font-size: 20px; font-weight: bold; text-align: left;">
scRNAseq
</p>
<p style="font-size: 20px; text-align: justify;">
Our scRNAseq data sequenced the PFC of mice at four different stages (P1, P4, P10, Adult). Users can browse the following content through the scRNAseq page:
</p>
- Select dataset: Select datasets containing different cell types
- Select celltype: Select different resolutions to view cell clusters on UMAP
- Select gene: Select different genes to view their expression
<p style="font-size: 20px; font-weight: bold; text-align: left;">
Spatial data
</p>
<p style="font-size: 20px; text-align: justify;">
We collected the whole brain stereo-seq datasets of P1 and Adult mice from [(Han et al., Neuron, 2025)](https://doi.org/10.1016/j.neuron.2025.02.015), extracted and analyzed the PFC brain region. Users can browse the following content through the spatial page:
</p>
- Spatial Clustering: Select different cell subtypes to view their spatial distribution
- Spatial Gene Expression: Select different genes to view their spatial expression
<p style="font-size: 20px; font-weight: bold; text-align: left;">
Download
</p>
<p style="font-size: 20px; text-align: justify;">
Download the raw and processed data from this study.
</p>
```{r}
#| context: setup
#| warning: false
#| message: false
library(ggplot2)
library(Seurat)
library(shiny)
library(rgl)
library(ggdark)
library(viridis)
library(dplyr)
source("R/Palettes.R")
# scrnaseq
seu.downsample <- readRDS('data/seu.all.HVGs.rds')
seu.downsample$orig.ident <- factor(seu.downsample$orig.ident,
levels = c("P0","P4","P10","Adult"))
seu.downsample$SubType <- seu.downsample$SubType_v4
# spatial
column <- c("x_rotated","y_rotated","Im.L2.3.IT","Im.L4.5.IT","Im.L5.IT","Im.L6.IT","L2.3.IT","L4.5.IT","L5.IT","L6.IT","L5.PT","L5.NP","L6.CT","Lamp5","Pvalb","Sst","Vip","NPC","Astro","Endo","Microglia","Oligo","OPC")
P1_cell2loc <- read.csv("data/P1_cell2location.csv", row.names = 1)
P1_cell2loc <- P1_cell2loc[,column]
P1_cell2loc$Endo <- 0
P1_cell2loc$Oligo <- 0
colnames(P1_cell2loc) <- c("x_rotated","y_rotated",names(col_cluster[["SubType"]]))
P1_cell2loc$SubType <- as.character(apply(P1_cell2loc[,names(col_cluster[["SubType"]])[-18]], 1, function(x){
names(which.max(x))
}))
P77_cell2loc <- read.csv("data/P77_cell2location.csv", row.names = 1)
P77_cell2loc <- P77_cell2loc[,column]
P77_cell2loc$Endo <- 0
colnames(P77_cell2loc) <- c("x_rotated","y_rotated",names(col_cluster[["SubType"]]))
P77_cell2loc$SubType <- as.character(apply(P77_cell2loc[,names(col_cluster[["SubType"]])[-18]], 1, function(x){
names(which.max(x))
}))
sp_p1 <- readRDS("data/P1_bin50_PFC.rds")
sp_p77 <- readRDS("data/P77_bin50_PFC.rds")
```
# scRNAseq {scrolling="true"}
## {.sidebar}
```{r}
selectInput('dataset', 'Select dataset', c("All cells","Neurons"), selected = "Neurons")
```
```{r}
selectInput('celltype', 'Select celltype', c("MainType","SubType"), selected = "SubType")
```
```{r}
selectInput('gene', 'Select gene', rownames(seu.downsample), selected = "Cux2")
```
## Column
### Row
#### Column
```{r}
plotOutput('cluster_plot')
```
### Row
#### Column
```{r}
plotOutput('gene_plot')
```
### Row
#### Column
```{r}
plotOutput('vln_plot')
```
```{r}
#| context: server
output$cluster_plot <- renderPlot({
if (input$dataset=="Neurons"){
seu <- subset(seu.downsample, cells = colnames(seu.downsample)[seu.downsample$MainType==c("Excitatory", "Inhibitory")])
}else{
seu <- seu.downsample
}
seu@meta.data[,input$celltype] <- factor(
seu@meta.data[,input$celltype],
levels = names(col_cluster[[input$celltype]])
)
DimPlot(
seu,
reduction = 'umap',
group.by = input$celltype,
split.by = "orig.ident",
ncol = 4,
cols = col_cluster[[input$celltype]],
pt.size = 0.5,
label = F) +
theme_bw(base_size = 15) +
theme(panel.grid = element_blank(), legend.position = "right",
strip.text = element_text(size = 20),
strip.background = element_rect(color="white", fill="white",)) +
coord_fixed() +
labs(title = "") +
guides(color = guide_legend(ncol = 1, override.aes = list(size = 3)))
})
output$gene_plot <- renderPlot({
if (input$dataset=="Neurons"){
seu <- subset(seu.downsample, cells = colnames(seu.downsample)[seu.downsample$MainType==c("Excitatory", "Inhibitory")])
}else{
seu <- seu.downsample
}
FeaturePlot(
seu,
features = input$gene,
reduction = 'umap',
split.by = "orig.ident",
ncol=4,
order = T,
pt.size = 0.5
) &
theme_bw(base_size = 15) &
theme(panel.grid = element_blank(), plot.title = element_text(hjust = 0.5),
strip.text = element_text(size = 20, face = "bold"),
legend.position = c(0.1,0.25)) &
coord_fixed() &
scale_color_gradientn(colours = c("lightblue3", "lightblue", "white", "red", "red4"), limits=c(0,2), breaks=c(0,2), na.value = "red4")
})
output$vln_plot <- renderPlot({
if (input$dataset=="Neurons"){
seu <- subset(seu.downsample, cells = colnames(seu.downsample)[seu.downsample$MainType==c("Excitatory", "Inhibitory")])
}else{
seu <- seu.downsample
}
seu@meta.data[,input$celltype] <- factor(
seu@meta.data[,input$celltype],
levels = names(col_cluster[[input$celltype]])
)
VlnPlot(seu, features = input$gene, group.by = input$celltype,
cols = col_cluster[[input$celltype]]) +
NoLegend() +
labs(x="")
})
```
# Spatial {scrolling="true"}
## {.sidebar}
```{r}
selectInput('sp_celltype', 'Select celltype', names(col_cluster[["SubType"]])[-18], selected = "Im L2/3 IT")
```
```{r}
selectInput('sp_gene', 'Select gene', intersect(rownames(sp_p1), rownames(sp_p77)), selected = "Cux2")
```
## Column
### Row
#### Column
```{r}
plotOutput('p1_cluster_plot')
```
#### Column
```{r}
plotOutput('p77_cluster_plot')
```
### Row
#### Column
```{r}
plotOutput('p1_subtype_plot')
```
#### Column
```{r}
plotOutput('p1_geneplot')
```
```{r}
#| context: server
output$p1_geneplot <- renderPlot({
gene_i <- input$sp_gene
gene_i_exp <- as.numeric(FetchData(object = sp_p1, vars = gene_i, slot = "counts")[,1])
data <- data.frame(
x = sp_p1$x_rotated, y = sp_p1$y_rotated,
gene = scale(gene_i_exp)
)
data$gene[data$gene<0] <- 0
data$gene[data$gene>3] <- 3
color <- col_cluster[["gene"]]
ggplot(data, aes(x=x, y=y, color=gene)) +
geom_point(size=2) +
scale_color_gradientn(colours = color, na.value = "lightgray",
limits = c(0,3),
breaks = c(0,3)) +
coord_fixed() +
theme_void()+
theme(legend.position = c(0.9,0.2), legend.title = element_blank(),
plot.title = element_text(hjust = 0.5)) +
labs(title=paste("P1", gene_i))
})
```
#### Column
```{r}
plotOutput('p77_subtype_plot')
```
#### Column
```{r}
plotOutput('p77_geneplot')
```
```{r}
#| context: server
output$p77_geneplot <- renderPlot({
gene_i <- input$sp_gene
gene_i_exp <- as.numeric(FetchData(object = sp_p77, vars = gene_i, slot = "counts")[,1])
data <- data.frame(
x = sp_p77$x_rotated, y = sp_p77$y_rotated,
gene = scale(gene_i_exp)
)
data$gene[data$gene<0] <- 0
data$gene[data$gene>3] <- 3
color <- col_cluster[["gene"]]
ggplot(data, aes(x=x, y=y, color=gene)) +
geom_point(size=0.8) +
scale_color_gradientn(colours = color, na.value = "lightgray",
limits = c(0,3),
breaks = c(0,3)) +
coord_fixed() +
theme_void() +
theme(legend.position = c(0.9,0.2), legend.title = element_blank(),
plot.title = element_text(hjust = 0.5)) +
labs(title=paste("P77", gene_i))
})
```
```{r}
#| context: server
output$p1_cluster_plot <- renderPlot({
data <- P1_cell2loc
ggplot(data, mapping = aes(x_rotated, y_rotated, color=SubType)) +
geom_point(size = 2) +
scale_color_manual(values = col_cluster[["SubType"]]) +
coord_fixed() +
#ggdark::dark_theme_void() +
theme_void() +
theme(legend.position = "right", plot.title = element_text(hjust = 0.5)) +
guides(color = guide_legend(title="", ncol = 1, override.aes = list(size = 3))) +
labs(title="P1 SubType")
})
output$p77_cluster_plot <- renderPlot({
data <- P77_cell2loc
ggplot(data, mapping = aes(x_rotated, y_rotated, color=SubType)) +
geom_point(size = 0.8) +
scale_color_manual(values = col_cluster[["SubType"]]) +
coord_fixed() +
#ggdark::dark_theme_void() +
theme_void() +
theme(legend.position = "right", plot.title = element_text(hjust = 0.5)) +
guides(color = guide_legend(title="", ncol = 1, override.aes = list(size = 3))) +
labs(title="P77 SubType")
})
output$p1_subtype_plot <- renderPlot({
data <- P1_cell2loc
subtype_i <- input$sp_celltype
df_i <- data.frame(
x = data$x_rotated,
y = data$y_rotated,
col = data[,subtype_i]
)
if (subtype_i %in% names(col_cluster[["SubType"]])[c(16,17,18,19,21)]){
df_i$col[!data$SubType==subtype_i] <- 0
}
df_i$col[df_i$col>1] <- 1
df_i$col[df_i$col<0.05] <- 0
low = "#f7f7f7"
if (length(which(df_i$col>0))==0){
high = "#f7f7f7"
}else{
high = col_cluster[["SubType"]][subtype_i]
}
ggplot(df_i, aes(x=x, y=y, color=col)) +
geom_point(size=2) +
scale_color_gradient(low = low, high=high,
na.value = "#f7f7f7", limits = c(0,max(df_i$col)),
breaks = c(0,max(df_i$col))) +
coord_fixed() +
theme_void() +
theme(legend.position = "none",
plot.title = element_text(hjust = 0.5)) +
labs(title=paste("P1", subtype_i))
})
output$p77_subtype_plot <- renderPlot({
data <- P77_cell2loc
data$`L5 IT`[data$`L5 IT`<0.25] <- 0
subtype_i <- input$sp_celltype
df_i <- data.frame(
x = data$x_rotated,
y = data$y_rotated,
col = data[,subtype_i]
)
if (subtype_i %in% names(col_cluster[["SubType"]])[c(16,17,18,20,21)]){
df_i$col[!data$SubType==subtype_i] <- 0
}
df_i$col[df_i$col>1] <- 1
df_i$col[df_i$col<0.05] <- 0
ggplot(df_i, aes(x=x, y=y, color=col)) +
geom_point(size=0.8) +
scale_color_gradient(low = "#f7f7f7", high=col_cluster[["SubType"]][subtype_i],
na.value = "#f7f7f7", limits = c(0,max(df_i$col)),
breaks = c(0,max(df_i$col))) +
coord_fixed() +
theme_void() +
theme(legend.position = "none",
plot.title = element_text(hjust = 0.5)) +
labs(title=paste("P77",subtype_i))
})
```
# Download
<p style="font-size: 20px; text-align: justify;">
The raw single cell RNA-seq data are available from GEO (<a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE298260">GSE298260</a>). The raw stereo-seq data are available from GEO
</p>
<p style="font-size: 20px; text-align: justify;">
The processed data can be downloaded here:</p>
- All cells data: <a href="https://huggingface.co/TigerZheng/PFCdev-data/resolve/main/seu.harmony.rds?download=true">sc_seu.rds</a>
- Spatial data: <a href="https://huggingface.co/TigerZheng/PFCdev-data/resolve/main/P1_bin50_PFC.rds?download=true">p1_seu.rds</a>, <a href="https://huggingface.co/TigerZheng/PFCdev-data/resolve/main/P77_bin50_PFC.rds?download=true">p77_seu.rds</a>
|