Spaces:
Sleeping
Sleeping
File size: 40,263 Bytes
3a48876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
import numpy as np
import os
import re
import datetime
import arxiv
import openai, tenacity
import base64, requests
import argparse
import configparser
import fitz, io, os
from PIL import Image
import gradio
import markdown
import json
import tiktoken
import concurrent.futures
from optimizeOpenAI import chatPaper
def parse_text(text):
lines = text.split("\n")
for i, line in enumerate(lines):
if "```" in line:
items = line.split('`')
if items[-1]:
lines[i] = f'<pre><code class="{items[-1]}">'
else:
lines[i] = f'</code></pre>'
else:
if i > 0:
line = line.replace("<", "<")
line = line.replace(">", ">")
lines[i] = '<br/>' + line.replace(" ", " ")
return "".join(lines)
# def get_response(system, context, myKey, raw = False):
# openai.api_key = myKey
# response = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# messages=[system, *context],
# )
# openai.api_key = ""
# if raw:
# return response
# else:
# message = response["choices"][0]["message"]["content"]
# message_with_stats = f'{message}'
# return message, parse_text(message_with_stats)
valid_api_keys = []
def api_key_check(api_key):
try:
chat = chatPaper([api_key])
if chat.check_api_available():
return api_key
else:
return None
except:
return None
def valid_apikey(api_keys):
api_keys = api_keys.replace(' ', '')
api_key_list = api_keys.split(',')
print(api_key_list)
global valid_api_keys
with concurrent.futures.ThreadPoolExecutor() as executor:
future_results = {
executor.submit(api_key_check, api_key): api_key
for api_key in api_key_list
}
for future in concurrent.futures.as_completed(future_results):
result = future.result()
if result:
valid_api_keys.append(result)
if len(valid_api_keys) > 0:
return "有效的api-key一共有{}个,分别是:{}, 现在可以提交你的paper".format(
len(valid_api_keys), valid_api_keys)
return "无效的api-key"
class Paper:
def __init__(self, path, title='', url='', abs='', authers=[], sl=[]):
# 初始化函数,根据pdf路径初始化Paper对象
self.url = url # 文章链接
self.path = path # pdf路径
self.sl = sl
self.section_names = [] # 段落标题
self.section_texts = {} # 段落内容
self.abs = abs
self.title_page = 0
if title == '':
self.pdf = fitz.open(self.path) # pdf文档
self.title = self.get_title()
self.parse_pdf()
else:
self.title = title
self.authers = authers
self.roman_num = [
"I", "II", 'III', "IV", "V", "VI", "VII", "VIII", "IIX", "IX", "X"
]
self.digit_num = [str(d + 1) for d in range(10)]
self.first_image = ''
def parse_pdf(self):
self.pdf = fitz.open(self.path) # pdf文档
self.text_list = [page.get_text() for page in self.pdf]
self.all_text = ' '.join(self.text_list)
self.section_page_dict = self._get_all_page_index() # 段落与页码的对应字典
print("section_page_dict", self.section_page_dict)
self.section_text_dict = self._get_all_page() # 段落与内容的对应字典
self.section_text_dict.update({"title": self.title})
self.section_text_dict.update({"paper_info": self.get_paper_info()})
self.pdf.close()
def get_paper_info(self):
first_page_text = self.pdf[self.title_page].get_text()
if "Abstract" in self.section_text_dict.keys():
abstract_text = self.section_text_dict['Abstract']
else:
abstract_text = self.abs
introduction_text = self.section_text_dict['Introduction']
first_page_text = first_page_text.replace(abstract_text, "").replace(
introduction_text, "")
return first_page_text
def get_image_path(self, image_path=''):
"""
将PDF中的第一张图保存到image.png里面,存到本地目录,返回文件名称,供gitee读取
:param filename: 图片所在路径,"C:\\Users\\Administrator\\Desktop\\nwd.pdf"
:param image_path: 图片提取后的保存路径
:return:
"""
# open file
max_size = 0
image_list = []
with fitz.Document(self.path) as my_pdf_file:
# 遍历所有页面
for page_number in range(1, len(my_pdf_file) + 1):
# 查看独立页面
page = my_pdf_file[page_number - 1]
# 查看当前页所有图片
images = page.get_images()
# 遍历当前页面所有图片
for image_number, image in enumerate(page.get_images(),
start=1):
# 访问图片xref
xref_value = image[0]
# 提取图片信息
base_image = my_pdf_file.extract_image(xref_value)
# 访问图片
image_bytes = base_image["image"]
# 获取图片扩展名
ext = base_image["ext"]
# 加载图片
image = Image.open(io.BytesIO(image_bytes))
image_size = image.size[0] * image.size[1]
if image_size > max_size:
max_size = image_size
image_list.append(image)
for image in image_list:
image_size = image.size[0] * image.size[1]
if image_size == max_size:
image_name = f"image.{ext}"
im_path = os.path.join(image_path, image_name)
print("im_path:", im_path)
max_pix = 480
origin_min_pix = min(image.size[0], image.size[1])
if image.size[0] > image.size[1]:
min_pix = int(image.size[1] * (max_pix / image.size[0]))
newsize = (max_pix, min_pix)
else:
min_pix = int(image.size[0] * (max_pix / image.size[1]))
newsize = (min_pix, max_pix)
image = image.resize(newsize)
image.save(open(im_path, "wb"))
return im_path, ext
return None, None
# 定义一个函数,根据字体的大小,识别每个章节名称,并返回一个列表
def get_chapter_names(self, ):
# # 打开一个pdf文件
doc = fitz.open(self.path) # pdf文档
text_list = [page.get_text() for page in doc]
all_text = ''
for text in text_list:
all_text += text
# # 创建一个空列表,用于存储章节名称
chapter_names = []
for line in all_text.split('\n'):
line_list = line.split(' ')
if '.' in line:
point_split_list = line.split('.')
space_split_list = line.split(' ')
if 1 < len(space_split_list) < 5:
if 1 < len(point_split_list) < 5 and (
point_split_list[0] in self.roman_num
or point_split_list[0] in self.digit_num):
print("line:", line)
chapter_names.append(line)
return chapter_names
def get_title(self):
doc = self.pdf # 打开pdf文件
max_font_size = 0 # 初始化最大字体大小为0
max_string = "" # 初始化最大字体大小对应的字符串为空
max_font_sizes = [0]
for page_index, page in enumerate(doc): # 遍历每一页
text = page.get_text("dict") # 获取页面上的文本信息
blocks = text["blocks"] # 获取文本块列表
for block in blocks: # 遍历每个文本块
if block["type"] == 0 and len(block['lines']): # 如果是文字类型
if len(block["lines"][0]["spans"]):
font_size = block["lines"][0]["spans"][0][
"size"] # 获取第一行第一段文字的字体大小
max_font_sizes.append(font_size)
if font_size > max_font_size: # 如果字体大小大于当前最大值
max_font_size = font_size # 更新最大值
max_string = block["lines"][0]["spans"][0][
"text"] # 更新最大值对应的字符串
max_font_sizes.sort()
print("max_font_sizes", max_font_sizes[-10:])
cur_title = ''
for page_index, page in enumerate(doc): # 遍历每一页
text = page.get_text("dict") # 获取页面上的文本信息
blocks = text["blocks"] # 获取文本块列表
for block in blocks: # 遍历每个文本块
if block["type"] == 0 and len(block['lines']): # 如果是文字类型
if len(block["lines"][0]["spans"]):
cur_string = block["lines"][0]["spans"][0][
"text"] # 更新最大值对应的字符串
font_flags = block["lines"][0]["spans"][0][
"flags"] # 获取第一行第一段文字的字体特征
font_size = block["lines"][0]["spans"][0][
"size"] # 获取第一行第一段文字的字体大小
# print(font_size)
if abs(font_size - max_font_sizes[-1]) < 0.3 or abs(
font_size - max_font_sizes[-2]) < 0.3:
# print("The string is bold.", max_string, "font_size:", font_size, "font_flags:", font_flags)
if len(cur_string
) > 4 and "arXiv" not in cur_string:
# print("The string is bold.", max_string, "font_size:", font_size, "font_flags:", font_flags)
if cur_title == '':
cur_title += cur_string
else:
cur_title += ' ' + cur_string
self.title_page = page_index
title = cur_title.replace('\n', ' ')
return title
def _get_all_page_index(self):
# 定义需要寻找的章节名称列表
section_list = self.sl
# 初始化一个字典来存储找到的章节和它们在文档中出现的页码
section_page_dict = {}
# 遍历每一页文档
for page_index, page in enumerate(self.pdf):
# 获取当前页面的文本内容
cur_text = page.get_text()
# 遍历需要寻找的章节名称列表
for section_name in section_list:
# 将章节名称转换成大写形式
section_name_upper = section_name.upper()
# 如果当前页面包含"Abstract"这个关键词
if "Abstract" == section_name and section_name in cur_text:
# 将"Abstract"和它所在的页码加入字典中
section_page_dict[section_name] = page_index
# 如果当前页面包含章节名称,则将章节名称和它所在的页码加入字典中
else:
if section_name + '\n' in cur_text:
section_page_dict[section_name] = page_index
elif section_name_upper + '\n' in cur_text:
section_page_dict[section_name] = page_index
# 返回所有找到的章节名称及它们在文档中出现的页码
return section_page_dict
def _get_all_page(self):
"""
获取PDF文件中每个页面的文本信息,并将文本信息按照章节组织成字典返回。
Returns:
section_dict (dict): 每个章节的文本信息字典,key为章节名,value为章节文本。
"""
text = ''
text_list = []
section_dict = {}
# 再处理其他章节:
text_list = [page.get_text() for page in self.pdf]
for sec_index, sec_name in enumerate(self.section_page_dict):
print(sec_index, sec_name, self.section_page_dict[sec_name])
if sec_index <= 0 and self.abs:
continue
else:
# 直接考虑后面的内容:
start_page = self.section_page_dict[sec_name]
if sec_index < len(list(self.section_page_dict.keys())) - 1:
end_page = self.section_page_dict[list(
self.section_page_dict.keys())[sec_index + 1]]
else:
end_page = len(text_list)
print("start_page, end_page:", start_page, end_page)
cur_sec_text = ''
if end_page - start_page == 0:
if sec_index < len(list(
self.section_page_dict.keys())) - 1:
next_sec = list(
self.section_page_dict.keys())[sec_index + 1]
if text_list[start_page].find(sec_name) == -1:
start_i = text_list[start_page].find(
sec_name.upper())
else:
start_i = text_list[start_page].find(sec_name)
if text_list[start_page].find(next_sec) == -1:
end_i = text_list[start_page].find(
next_sec.upper())
else:
end_i = text_list[start_page].find(next_sec)
cur_sec_text += text_list[start_page][start_i:end_i]
else:
for page_i in range(start_page, end_page):
# print("page_i:", page_i)
if page_i == start_page:
if text_list[start_page].find(sec_name) == -1:
start_i = text_list[start_page].find(
sec_name.upper())
else:
start_i = text_list[start_page].find(sec_name)
cur_sec_text += text_list[page_i][start_i:]
elif page_i < end_page:
cur_sec_text += text_list[page_i]
elif page_i == end_page:
if sec_index < len(
list(self.section_page_dict.keys())) - 1:
next_sec = list(
self.section_page_dict.keys())[sec_index +
1]
if text_list[start_page].find(next_sec) == -1:
end_i = text_list[start_page].find(
next_sec.upper())
else:
end_i = text_list[start_page].find(
next_sec)
cur_sec_text += text_list[page_i][:end_i]
section_dict[sec_name] = cur_sec_text.replace('-\n',
'').replace(
'\n', ' ')
return section_dict
# 定义Reader类
class Reader:
# 初始化方法,设置属性
def __init__(self,
key_word='',
query='',
filter_keys='',
root_path='./',
gitee_key='',
sort=arxiv.SortCriterion.SubmittedDate,
user_name='defualt',
language='cn',
api_keys: list = [],
model_name="gpt-3.5-turbo",
p=1.0,
temperature=1.0):
self.api_keys = api_keys
self.chatPaper = chatPaper(api_keys=self.api_keys,
apiTimeInterval=10,
temperature=temperature,
top_p=p,
model_name=model_name) #openAI api封装
self.user_name = user_name # 读者姓名
self.key_word = key_word # 读者感兴趣的关键词
self.query = query # 读者输入的搜索查询
self.sort = sort # 读者选择的排序方式
self.language = language # 读者选择的语言
self.filter_keys = filter_keys # 用于在摘要中筛选的关键词
self.root_path = root_path
self.file_format = 'md' # or 'txt',如果为图片,则必须为'md'
self.save_image = False
if self.save_image:
self.gitee_key = self.config.get('Gitee', 'api')
else:
self.gitee_key = ''
self.max_token_num = 4096
self.encoding = tiktoken.get_encoding("gpt2")
def get_arxiv(self, max_results=30):
search = arxiv.Search(
query=self.query,
max_results=max_results,
sort_by=self.sort,
sort_order=arxiv.SortOrder.Descending,
)
return search
def filter_arxiv(self, max_results=30):
search = self.get_arxiv(max_results=max_results)
print("all search:")
for index, result in enumerate(search.results()):
print(index, result.title, result.updated)
filter_results = []
filter_keys = self.filter_keys
print("filter_keys:", self.filter_keys)
# 确保每个关键词都能在摘要中找到,才算是目标论文
for index, result in enumerate(search.results()):
abs_text = result.summary.replace('-\n', '-').replace('\n', ' ')
meet_num = 0
for f_key in filter_keys.split(" "):
if f_key.lower() in abs_text.lower():
meet_num += 1
if meet_num == len(filter_keys.split(" ")):
filter_results.append(result)
# break
print("filter_results:", len(filter_results))
print("filter_papers:")
for index, result in enumerate(filter_results):
print(index, result.title, result.updated)
return filter_results
def validateTitle(self, title):
# 将论文的乱七八糟的路径格式修正
rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |'
new_title = re.sub(rstr, "_", title) # 替换为下划线
return new_title
def download_pdf(self, filter_results):
# 先创建文件夹
date_str = str(datetime.datetime.now())[:13].replace(' ', '-')
key_word = str(self.key_word.replace(':', ' '))
path = self.root_path + 'pdf_files/' + self.query.replace(
'au: ', '').replace('title: ', '').replace('ti: ', '').replace(
':', ' ')[:25] + '-' + date_str
try:
os.makedirs(path)
except:
pass
print("All_paper:", len(filter_results))
# 开始下载:
paper_list = []
for r_index, result in enumerate(filter_results):
try:
title_str = self.validateTitle(result.title)
pdf_name = title_str + '.pdf'
# result.download_pdf(path, filename=pdf_name)
self.try_download_pdf(result, path, pdf_name)
paper_path = os.path.join(path, pdf_name)
print("paper_path:", paper_path)
paper = Paper(
path=paper_path,
url=result.entry_id,
title=result.title,
abs=result.summary.replace('-\n', '-').replace('\n', ' '),
authers=[str(aut) for aut in result.authors],
)
# 下载完毕,开始解析:
paper.parse_pdf()
paper_list.append(paper)
except Exception as e:
print("download_error:", e)
pass
return paper_list
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4,
max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def try_download_pdf(self, result, path, pdf_name):
result.download_pdf(path, filename=pdf_name)
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4,
max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def upload_gitee(self, image_path, image_name='', ext='png'):
"""
上传到码云
:return:
"""
with open(image_path, 'rb') as f:
base64_data = base64.b64encode(f.read())
base64_content = base64_data.decode()
date_str = str(datetime.datetime.now())[:19].replace(':', '-').replace(
' ', '-') + '.' + ext
path = image_name + '-' + date_str
payload = {
"access_token": self.gitee_key,
"owner": self.config.get('Gitee', 'owner'),
"repo": self.config.get('Gitee', 'repo'),
"path": self.config.get('Gitee', 'path'),
"content": base64_content,
"message": "upload image"
}
# 这里需要修改成你的gitee的账户和仓库名,以及文件夹的名字:
url = f'https://gitee.com/api/v5/repos/' + self.config.get(
'Gitee', 'owner') + '/' + self.config.get(
'Gitee', 'repo') + '/contents/' + self.config.get(
'Gitee', 'path') + '/' + path
rep = requests.post(url, json=payload).json()
print("rep:", rep)
if 'content' in rep.keys():
image_url = rep['content']['download_url']
else:
image_url = r"https://gitee.com/api/v5/repos/" + self.config.get(
'Gitee', 'owner') + '/' + self.config.get(
'Gitee', 'repo') + '/contents/' + self.config.get(
'Gitee', 'path') + '/' + path
return image_url
def summary_with_chat(self, paper_list):
htmls = []
utoken = 0
ctoken = 0
ttoken = 0
for paper_index, paper in enumerate(paper_list):
# 第一步先用title,abs,和introduction进行总结。
text = ''
text += 'Title:' + paper.title
text += 'Url:' + paper.url
text += 'Abstrat:' + paper.abs
text += 'Paper_info:' + paper.section_text_dict['paper_info']
# intro
text += list(paper.section_text_dict.values())[0]
#max_token = 2500 * 4
#text = text[:max_token]
chat_summary_text, utoken1, ctoken1, ttoken1 = self.chat_summary(
text=text)
htmls.append(chat_summary_text)
# TODO 往md文档中插入论文里的像素最大的一张图片,这个方案可以弄的更加智能一些:
method_key = ''
for parse_key in paper.section_text_dict.keys():
if 'method' in parse_key.lower(
) or 'approach' in parse_key.lower():
method_key = parse_key
break
if method_key != '':
text = ''
method_text = ''
summary_text = ''
summary_text += "<summary>" + chat_summary_text
# methods
method_text += paper.section_text_dict[method_key]
text = summary_text + "\n<Methods>:\n" + method_text
chat_method_text, utoken2, ctoken2, ttoken2 = self.chat_method(
text=text)
else:
chat_method_text = ''
htmls.append(chat_method_text)
htmls.append("\n")
# 第三步总结全文,并打分:
conclusion_key = ''
for parse_key in paper.section_text_dict.keys():
if 'conclu' in parse_key.lower():
conclusion_key = parse_key
break
text = ''
conclusion_text = ''
summary_text = ''
summary_text += "<summary>" + chat_summary_text + "\n <Method summary>:\n" + chat_method_text
if conclusion_key != '':
# conclusion
conclusion_text += paper.section_text_dict[conclusion_key]
text = summary_text + "\n <Conclusion>:\n" + conclusion_text
else:
text = summary_text
chat_conclusion_text, utoken3, ctoken3, ttoken3 = self.chat_conclusion(
text=text)
htmls.append(chat_conclusion_text)
htmls.append("\n")
# token统计
utoken = utoken + utoken1 + utoken2 + utoken3
ctoken = ctoken + ctoken1 + ctoken2 + ctoken3
ttoken = ttoken + ttoken1 + ttoken2 + ttoken3
cost = (ttoken / 1000) * 0.002
pos_count = {
"usage_token_used": str(utoken),
"completion_token_used": str(ctoken),
"total_token_used": str(ttoken),
"cost": str(cost),
}
md_text = "\n".join(htmls)
#with open(os.path.join('./', 'output.md'), "w", encoding="utf8") as f:
# f.write(md_text)
return markdown.markdown(md_text), pos_count # , os.path.join('./', 'output.md')
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4,
max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_conclusion(self, text):
conclusion_prompt_token = 650
text_token = len(self.encoding.encode(text))
clip_text_index = int(
len(text) * (self.max_token_num - conclusion_prompt_token) /
text_token)
clip_text = text[:clip_text_index]
self.chatPaper.reset(
convo_id="chatConclusion",
system_prompt="You are a reviewer in the field of [" +
self.key_word + "] and you need to critically review this article")
self.chatPaper.add_to_conversation(
convo_id="chatConclusion",
role="assistant",
message=
"This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to summarize the following questions:"
+ clip_text) # 背景知识,可以参考OpenReview的审稿流程
content = """
8. Make the following summary.Be sure to use Chinese answers (proper nouns need to be marked in English).
- (1):What is the significance of this piece of work?
- (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload.
.......
Follow the format of the output later:
8. Conclusion: \n\n
- (1):xxx;\n
- (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write.
"""
result = self.chatPaper.ask(
prompt=content,
role="user",
convo_id="chatConclusion",
)
print(result)
return result[0], result[1], result[2], result[3]
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4,
max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_method(self, text):
method_prompt_token = 650
text_token = len(self.encoding.encode(text))
clip_text_index = int(
len(text) * (self.max_token_num - method_prompt_token) /
text_token)
clip_text = text[:clip_text_index]
self.chatPaper.reset(
convo_id="chatMethod",
system_prompt="You are a researcher in the field of [" +
self.key_word +
"] who is good at summarizing papers using concise statements"
) # chatgpt 角色
self.chatPaper.add_to_conversation(
convo_id="chatMethod",
role="assistant",
message=str(
"This is the <summary> and <Method> part of an English document, where <summary> you have summarized, but the <Methods> part, I need your help to read and summarize the following questions."
+ clip_text))
content = """
7. Describe in detail the methodological idea of this article. Be sure to use Chinese answers (proper nouns need to be marked in English). For example, its steps are.
- (1):...
- (2):...
- (3):...
- .......
Follow the format of the output that follows:
7. Methods: \n\n
- (1):xxx;\n
- (2):xxx;\n
- (3):xxx;\n
....... \n\n
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write.
"""
result = self.chatPaper.ask(
prompt=content,
role="user",
convo_id="chatMethod",
)
print(result)
return result[0], result[1], result[2], result[3]
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4,
max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_summary(self, text):
summary_prompt_token = 1000
text_token = len(self.encoding.encode(text))
clip_text_index = int(
len(text) * (self.max_token_num - summary_prompt_token) /
text_token)
clip_text = text[:clip_text_index]
self.chatPaper.reset(
convo_id="chatSummary",
system_prompt="You are a researcher in the field of [" +
self.key_word +
"] who is good at summarizing papers using concise statements")
self.chatPaper.add_to_conversation(
convo_id="chatSummary",
role="assistant",
message=str(
"This is the title, author, link, abstract and introduction of an English document. I need your help to read and summarize the following questions: "
+ clip_text))
content = """
1. Mark the title of the paper (with Chinese translation)
2. list all the authors' names (use English)
3. mark the first author's affiliation (output Chinese translation only)
4. mark the keywords of this article (use English)
5. link to the paper, Github code link (if available, fill in Github:None if not)
6. summarize according to the following four points.Be sure to use Chinese answers (proper nouns need to be marked in English)
- (1):What is the research background of this article?
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
- (3):What is the research methodology proposed in this paper?
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
Follow the format of the output that follows:
1. Title: xxx\n\n
2. Authors: xxx\n\n
3. Affiliation: xxx\n\n
4. Keywords: xxx\n\n
5. Urls: xxx or xxx , xxx \n\n
6. Summary: \n\n
- (1):xxx;\n
- (2):xxx;\n
- (3):xxx;\n
- (4):xxx.\n\n
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed.
"""
result = self.chatPaper.ask(
prompt=content,
role="user",
convo_id="chatSummary",
)
print(result)
return result[0], result[1], result[2], result[3]
def export_to_markdown(self, text, file_name, mode='w'):
# 使用markdown模块的convert方法,将文本转换为html格式
# html = markdown.markdown(text)
# 打开一个文件,以写入模式
with open(file_name, mode, encoding="utf-8") as f:
# 将html格式的内容写入文件
f.write(text)
# 定义一个方法,打印出读者信息
def show_info(self):
print(f"Key word: {self.key_word}")
print(f"Query: {self.query}")
print(f"Sort: {self.sort}")
def upload_pdf(api_keys, text, model_name, p, temperature, file):
# 检查两个输入都不为空
api_key_list = None
if api_keys:
api_key_list = api_keys.split(',')
elif not api_keys and valid_api_keys != []:
api_key_list = valid_api_keys
if not text or not file or not api_key_list:
return "两个输入都不能为空,请输入字符并上传 PDF 文件!"
# 判断PDF文件
#if file and file.name.split(".")[-1].lower() != "pdf":
# return '请勿上传非 PDF 文件!'
else:
section_list = text.split(',')
paper_list = [Paper(path=file, sl=section_list)]
# 创建一个Reader对象
print(api_key_list)
reader = Reader(api_keys=api_key_list,
model_name=model_name,
p=p,
temperature=temperature)
sum_info, cost = reader.summary_with_chat(
paper_list=paper_list) # type: ignore
return cost, sum_info
api_title = "api-key可用验证"
api_description = '''<div align='left'>
<img src='https://visitor-badge.laobi.icu/badge?page_id=https://huggingface.co/spaces/wangrongsheng/ChatPaper'>
<img align='right' src='https://i.328888.xyz/2023/03/12/vH9dU.png' width="150">
使用卡顿?请Fork到自己的Space,轻松使用:<a href="https://huggingface.co/spaces/wangrongsheng/ChatPaper?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
💥💥💥<strong>面向全球,服务万千科研人的ChatPaper在线版正式上线:<a href="https://chatpaper.org/">https://chatpaper.org/</a> </strong>💥💥💥
Use ChatGPT to summary the papers.Star our Github [🌟ChatPaper](https://github.com/kaixindelele/ChatPaper) .
💗如果您觉得我们的项目对您有帮助,还请您给我们一些鼓励!💗
🔴请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
使用卡顿?请点击右上角<strong>Duplicate this Space</strong> 项目!
</div>
'''
api_input = [
gradio.inputs.Textbox(label="请输入你的API-key(必填, 多个API-key请用英文逗号隔开)",
default="",
type='password')
]
api_gui = gradio.Interface(fn=valid_apikey,
inputs=api_input,
outputs="text",
title=api_title,
description=api_description)
# 标题
title = "ChatPaper"
# 描述
description = '''<div align='left'>
<img src='https://visitor-badge.laobi.icu/badge?page_id=https://huggingface.co/spaces/wangrongsheng/ChatPaper'>
<img align='right' src='https://i.328888.xyz/2023/03/12/vH9dU.png' width="150">
使用卡顿?请Fork到自己的Space,轻松使用:<a href="https://huggingface.co/spaces/wangrongsheng/ChatPaper?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
💥💥💥<strong>面向全球,服务万千科研人的ChatPaper在线版正式上线:<a href="https://chatpaper.org/">https://chatpaper.org/</a> </strong>💥💥💥
Use ChatGPT to summary the papers.Star our Github [🌟ChatPaper](https://github.com/kaixindelele/ChatPaper) .
💗如果您觉得我们的项目对您有帮助,还请您给我们一些鼓励!💗
🔴请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
使用卡顿?请点击右上角<strong>Duplicate this Space</strong> 项目!
</div>
'''
# 创建Gradio界面
ip = [
gradio.inputs.Textbox(label="请输入你的API-key(必填, 多个API-key请用英文逗号隔开),不需要空格",
default="",
type='password'),
gradio.inputs.Textbox(
label="请输入论文大标题索引(用英文逗号隔开,必填)",
default=
"'Abstract,Introduction,Related Work,Background,Preliminary,Problem Formulation,Methods,Methodology,Method,Approach,Approaches,Materials and Methods,Experiment Settings,Experiment,Experimental Results,Evaluation,Experiments,Results,Findings,Data Analysis,Discussion,Results and Discussion,Conclusion,References'"
),
gradio.inputs.Radio(choices=["gpt-3.5-turbo", "gpt-3.5-turbo-0301"],
default="gpt-3.5-turbo",
label="Select model"),
gradio.inputs.Slider(minimum=-0,
maximum=1.0,
default=1.0,
step=0.05,
label="Top-p (nucleus sampling)"),
gradio.inputs.Slider(minimum=-0,
maximum=5.0,
default=0.5,
step=0.5,
label="Temperature"),
gradio.inputs.File(label="请上传论文PDF(必填)")
]
chatpaper_gui = gradio.Interface(fn=upload_pdf,
inputs=ip,
outputs=["json", "html"],
title=title,
description=description)
# Start server
gui = gradio.TabbedInterface(interface_list=[api_gui, chatpaper_gui],
tab_names=["API-key", "ChatPaper"])
gui.launch(quiet=True, show_api=False)
|