Spaces:
Sleeping
Sleeping
File size: 23,356 Bytes
069c5f0 abe04aa 9232b74 069c5f0 abe04aa 069c5f0 abe04aa 069c5f0 abe04aa 069c5f0 abe04aa 069c5f0 13b14ac 069c5f0 fa69421 069c5f0 09c34cd 069c5f0 09c34cd 069c5f0 f63f07e 069c5f0 f63f07e ad26208 069c5f0 abe04aa 069c5f0 13b14ac 069c5f0 104ba8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import os
import torch
import random
import gradio as gr
from glob import glob
from omegaconf import OmegaConf
from safetensors import safe_open
from diffusers import AutoencoderKL
from diffusers import EulerDiscreteScheduler, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationFreeInitPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from diffusers.training_utils import set_seed
from animatediff.utils.freeinit_utils import get_freq_filter
from collections import namedtuple
pretrained_model_path = "models/StableDiffusion/stable-diffusion-v1-5"
inference_config_path = "configs/inference/inference-v1.yaml"
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
examples = [
# 0-RealisticVision
[
"realisticVisionV51_v20Novae.safetensors",
"mm_sd_v14.ckpt",
"A panda standing on a surfboard in the ocean under moonlight.",
"worst quality, low quality, nsfw, logo",
512, 512, "2005563494988190",
"butterworth", 0.25, 0.25, 3,
["use_fp16"]
],
# 1-ToonYou
[
"toonyou_beta3.safetensors",
"mm_sd_v14.ckpt",
"(best quality, masterpiece), 1girl, looking at viewer, blurry background, upper body, contemporary, dress",
"(worst quality, low quality)",
512, 512, "478028150728261",
"butterworth", 0.25, 0.25, 3,
["use_fp16"]
],
# 2-Lyriel
[
"lyriel_v16.safetensors",
"mm_sd_v14.ckpt",
"hypercars cyberpunk moving, muted colors, swirling color smokes, legend, cityscape, space",
"3d, cartoon, anime, sketches, worst quality, low quality, nsfw, logo",
512, 512, "1566149281915957",
"butterworth", 0.25, 0.25, 3,
["use_fp16"]
],
# 3-RCNZ
[
"rcnzCartoon3d_v10.safetensors",
"mm_sd_v14.ckpt",
"A cute raccoon playing guitar in a boat on the ocean",
"worst quality, low quality, nsfw, logo",
512, 512, "1566149281915957",
"butterworth", 0.25, 0.25, 3,
["use_fp16"]
],
# 4-MajicMix
[
"majicmixRealistic_v5Preview.safetensors",
"mm_sd_v14.ckpt",
"1girl, reading book",
"(ng_deepnegative_v1_75t:1.2), (badhandv4:1), (worst quality:2), (low quality:2), (normal quality:2), lowres, bad anatomy, bad hands, watermark, moles",
512, 512, "2005563494988190",
"butterworth", 0.25, 0.25, 3,
["use_fp16"]
],
# # 5-RealisticVision
# [
# "realisticVisionV51_v20Novae.safetensors",
# "mm_sd_v14.ckpt",
# "A panda standing on a surfboard in the ocean in sunset.",
# "worst quality, low quality, nsfw, logo",
# 512, 512, "2005563494988190",
# "butterworth", 0.25, 0.25, 3,
# ["use_fp16"]
# ]
]
# clean unrelated ckpts
# ckpts = [
# "realisticVisionV40_v20Novae.safetensors",
# "majicmixRealistic_v5Preview.safetensors",
# "rcnzCartoon3d_v10.safetensors",
# "lyriel_v16.safetensors",
# "toonyou_beta3.safetensors"
# ]
# for path in glob(os.path.join("models", "DreamBooth_LoRA", "*.safetensors")):
# for ckpt in ckpts:
# if path.endswith(ckpt): break
# else:
# print(f"### Cleaning {path} ...")
# os.system(f"rm -rf {path}")
# os.system(f"rm -rf {os.path.join('models', 'DreamBooth_LoRA', '*.safetensors')}")
# os.system(f"bash download_bashscripts/1-ToonYou.sh")
# os.system(f"bash download_bashscripts/2-Lyriel.sh")
# os.system(f"bash download_bashscripts/3-RcnzCartoon.sh")
# os.system(f"bash download_bashscripts/4-MajicMix.sh")
# os.system(f"bash download_bashscripts/5-RealisticVision.sh")
# # clean Gradio cache
# print(f"### Cleaning cached examples ...")
# os.system(f"rm -rf gradio_cached_examples/")
class AnimateController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA")
self.savedir = os.path.join(self.basedir, "samples")
os.makedirs(self.savedir, exist_ok=True)
self.base_model_list = []
self.motion_module_list = []
self.filter_type_list = [
"butterworth",
"gaussian",
"box",
"ideal"
]
self.selected_base_model = None
self.selected_motion_module = None
self.selected_filter_type = None
self.set_width = None
self.set_height = None
self.set_d_s = None
self.set_d_t = None
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.inference_config = OmegaConf.load(inference_config_path)
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
self.freq_filter = None
self.update_base_model(self.base_model_list[-2])
self.update_motion_module(self.motion_module_list[0])
self.update_filter(512, 512, self.filter_type_list[0], 0.25, 0.25)
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
self.motion_module_list = sorted([os.path.basename(p) for p in motion_module_list])
def refresh_personalized_model(self):
base_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
self.base_model_list = sorted([os.path.basename(p) for p in base_model_list])
def update_base_model(self, base_model_dropdown):
self.selected_base_model = base_model_dropdown
base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
base_model_state_dict = {}
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys(): base_model_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_model_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_model_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict)
return gr.Dropdown.update()
def update_motion_module(self, motion_module_dropdown):
self.selected_motion_module = motion_module_dropdown
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
_, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
return gr.Dropdown.update()
# def update_filter(self, shape, method, n, d_s, d_t):
def update_filter(self, width_slider, height_slider, filter_type_dropdown, d_s_slider, d_t_slider):
self.set_width = width_slider
self.set_height = height_slider
self.selected_filter_type = filter_type_dropdown
self.set_d_s = d_s_slider
self.set_d_t = d_t_slider
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
shape = [1, 4, 16, self.set_height//vae_scale_factor, self.set_width//vae_scale_factor]
self.freq_filter = get_freq_filter(
shape,
device="cuda",
filter_type=self.selected_filter_type,
n=4,
d_s=self.set_d_s,
d_t=self.set_d_t
)
def animate(
self,
base_model_dropdown,
motion_module_dropdown,
prompt_textbox,
negative_prompt_textbox,
width_slider,
height_slider,
seed_textbox,
# freeinit params
filter_type_dropdown,
d_s_slider,
d_t_slider,
num_iters_slider,
# speed up
speed_up_options
):
# set global seed
set_seed(42)
d_s = float(d_s_slider)
d_t = float(d_t_slider)
num_iters = int(num_iters_slider)
if self.selected_base_model != base_model_dropdown: self.update_base_model(base_model_dropdown)
if self.selected_motion_module != motion_module_dropdown: self.update_motion_module(motion_module_dropdown)
if self.set_width != width_slider or self.set_height != height_slider or self.selected_filter_type != filter_type_dropdown or self.set_d_s != d_s or self.set_d_t != d_t:
self.update_filter(width_slider, height_slider, filter_type_dropdown, d_s, d_t)
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention()
pipeline = AnimationFreeInitPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
).to("cuda")
# (freeinit) initialize frequency filter for noise reinitialization -------------
pipeline.freq_filter = self.freq_filter
# -------------------------------------------------------------------------------
if int(seed_textbox) > 0: seed = int(seed_textbox)
else: seed = random.randint(1, 1e16)
torch.manual_seed(int(seed))
assert seed == torch.initial_seed()
# print(f"### seed: {seed}")
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
sample_output = pipeline(
prompt_textbox,
negative_prompt = negative_prompt_textbox,
num_inference_steps = 25,
guidance_scale = 7.5,
width = width_slider,
height = height_slider,
video_length = 16,
num_iters = num_iters,
use_fast_sampling = True if "use_coarse_to_fine_sampling" in speed_up_options else False,
save_intermediate = False,
return_orig = True,
use_fp16 = True if "use_fp16" in speed_up_options else False
)
orig_sample = sample_output.orig_videos
sample = sample_output.videos
save_sample_path = os.path.join(self.savedir, f"sample.mp4")
save_videos_grid(sample, save_sample_path)
save_orig_sample_path = os.path.join(self.savedir, f"sample_orig.mp4")
save_videos_grid(orig_sample, save_orig_sample_path)
# save_compare_path = os.path.join(self.savedir, f"compare.mp4")
# save_videos_grid(torch.concat([orig_sample, sample]), save_compare_path)
json_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"width": width_slider,
"height": height_slider,
"seed": seed,
"base_model": base_model_dropdown,
"motion_module": motion_module_dropdown,
"filter_type": filter_type_dropdown,
"d_s": d_s,
"d_t": d_t,
"num_iters": num_iters,
"use_fp16": True if "use_fp16" in speed_up_options else False,
"use_coarse_to_fine_sampling": True if "use_coarse_to_fine_sampling" in speed_up_options else False
}
print(json_config)
# return gr.Video.update(value=save_compare_path), gr.Json.update(value=json_config)
# return gr.Video.update(value=save_orig_sample_path), gr.Video.update(value=save_sample_path), gr.Video.update(value=save_compare_path), gr.Json.update(value=json_config)
return gr.Video.update(value=save_orig_sample_path), gr.Video.update(value=save_sample_path), gr.Json.update(value=json_config)
controller = AnimateController()
def ui():
with gr.Blocks(css=css) as demo:
# gr.Markdown('# FreeInit')
gr.Markdown(
"""
<div align="center">
<h1>FreeInit</h1>
</div>
"""
)
gr.Markdown(
"""
<p align="center">
<a title="Project Page" href="https://tianxingwu.github.io/pages/FreeInit/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/Project-Website-5B7493?logo=googlechrome&logoColor=5B7493">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2312.07537" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/arXiv-Paper-b31b1b?logo=arxiv&logoColor=b31b1b">
</a>
<a title="GitHub" href="https://github.com/TianxingWu/FreeInit" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/TianxingWu/FreeInit?label=GitHub%20%E2%98%85&&logo=github" alt="badge-github-stars">
</a>
<a title="Video" href="https://youtu.be/lS5IYbAqriI" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/YouTube-Video-red?logo=youtube&logoColor=red">
</a>
<a title="Visitor" href="https://hits.seeyoufarm.com" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2FTianxingWu%2FFreeInit&count_bg=%23678F74&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false">
</a>
</p>
"""
# <a title="Visitor" href="https://hits.seeyoufarm.com" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
# <img src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2FTianxingWu%2FFreeInit&count_bg=%23678F74&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false">
# </a>
)
gr.Markdown(
"""
Official Gradio Demo for ***FreeInit: Bridging Initialization Gap in Video Diffusion Models***.
FreeInit improves time consistency of diffusion-based video generation at inference time. In this demo, we apply FreeInit on [AnimateDiff v1](https://github.com/guoyww/AnimateDiff) as an example. Sampling time: ~ 80s.<br>
"""
)
with gr.Row():
with gr.Column():
# gr.Markdown(
# """
# ### Usage
# 1. Select customized model and motion module in `Model Settings`.
# 3. Set `FreeInit Settings`.
# 3. Provide `Prompt` and `Negative Prompt` for your selected model. You can refer to each model's webpage on CivitAI to learn how to write prompts for them:
# - [`toonyou_beta3.safetensors`](https://civitai.com/models/30240?modelVersionId=78775)
# - [`lyriel_v16.safetensors`](https://civitai.com/models/22922/lyriel)
# - [`rcnzCartoon3d_v10.safetensors`](https://civitai.com/models/66347?modelVersionId=71009)
# - [`majicmixRealistic_v5Preview.safetensors`](https://civitai.com/models/43331?modelVersionId=79068)
# - [`realisticVisionV20_v20.safetensors`](https://civitai.com/models/4201?modelVersionId=29460)
# 4. Click `Generate`.
# """
# )
prompt_textbox = gr.Textbox( label="Prompt", lines=3, placeholder="Enter your prompt here")
negative_prompt_textbox = gr.Textbox( label="Negative Prompt", lines=3, value="worst quality, low quality, nsfw, logo")
gr.Markdown(
"""
*Prompt Tips:*
For each personalized model in `Model Settings`, you can refer to their webpage on CivitAI to learn how to write good prompts for them:
- [`realisticVisionV51_v20Novae.safetensors`](https://civitai.com/models/4201?modelVersionId=130072)
- [`toonyou_beta3.safetensors`](https://civitai.com/models/30240?modelVersionId=78775)
- [`lyriel_v16.safetensors`](https://civitai.com/models/22922/lyriel)
- [`rcnzCartoon3d_v10.safetensors`](https://civitai.com/models/66347?modelVersionId=71009)
- [`majicmixRealistic_v5Preview.safetensors`](https://civitai.com/models/43331?modelVersionId=79068)
"""
)
with gr.Accordion("Model Settings", open=False):
gr.Markdown(
"""
Select personalized model and motion module for AnimateDiff.
"""
)
base_model_dropdown = gr.Dropdown( label="Base DreamBooth Model", choices=controller.base_model_list, value=controller.base_model_list[-2], interactive=True,
info="Select personalized text-to-image model from community")
motion_module_dropdown = gr.Dropdown( label="Motion Module", choices=controller.motion_module_list, value=controller.motion_module_list[0], interactive=True,
info="Select motion module. Recommend mm_sd_v14.ckpt for larger movements.")
base_model_dropdown.change(fn=controller.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
with gr.Accordion("FreeInit Params", open=False):
gr.Markdown(
"""
Adjust to control the smoothness.
"""
)
filter_type_dropdown = gr.Dropdown( label="Filter Type", choices=controller.filter_type_list, value=controller.filter_type_list[0], interactive=True,
info="Default as Butterworth. To fix large inconsistencies, consider using Gaussian.")
d_s_slider = gr.Slider( label="d_s", value=0.25, minimum=0, maximum=1, step=0.125,
info="Stop frequency for spatial dimensions (0.0-1.0)")
d_t_slider = gr.Slider( label="d_t", value=0.25, minimum=0, maximum=1, step=0.125,
info="Stop frequency for temporal dimension (0.0-1.0)")
# num_iters_textbox = gr.Textbox( label="FreeInit Iterations", value=3, info="Sould be integer >1, larger value leads to smoother results)")
num_iters_slider = gr.Slider( label="FreeInit Iterations", value=3, minimum=2, maximum=5, step=1,
info="Larger value leads to smoother results & longer inference time.")
with gr.Accordion("Advance", open=False):
with gr.Row():
width_slider = gr.Slider( label="Width", value=512, minimum=256, maximum=1024, step=64 )
height_slider = gr.Slider( label="Height", value=512, minimum=256, maximum=1024, step=64 )
with gr.Row():
seed_textbox = gr.Textbox( label="Seed", value=2005563494988190)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e16)), inputs=[], outputs=[seed_textbox])
with gr.Row():
speed_up_options = gr.CheckboxGroup(
["use_fp16", "use_coarse_to_fine_sampling"],
label="Speed-Up Options",
value=["use_fp16"]
)
generate_button = gr.Button( value="Generate", variant='primary' )
# with gr.Column():
# result_video = gr.Video( label="Generated Animation", interactive=False )
# json_config = gr.Json( label="Config", value=None )
with gr.Column():
with gr.Row():
orig_video = gr.Video( label="AnimateDiff", interactive=False )
freeinit_video = gr.Video( label="AnimateDiff + FreeInit", interactive=False )
# with gr.Row():
# compare_video = gr.Video( label="Compare", interactive=False )
with gr.Row():
json_config = gr.Json( label="Config", value=None )
inputs = [base_model_dropdown, motion_module_dropdown,
prompt_textbox, negative_prompt_textbox, width_slider, height_slider, seed_textbox,
filter_type_dropdown, d_s_slider, d_t_slider, num_iters_slider,
speed_up_options
]
# outputs = [result_video, json_config]
# outputs = [orig_video, freeinit_video, compare_video, json_config]
outputs = [orig_video, freeinit_video, json_config]
generate_button.click( fn=controller.animate, inputs=inputs, outputs=outputs )
gr.Examples( fn=controller.animate, examples=examples, inputs=inputs, outputs=outputs, cache_examples=True)
return demo
if __name__ == "__main__":
demo = ui()
demo.queue(max_size=20)
demo.launch()
|