File size: 7,672 Bytes
c33d1b8
7fb4aa3
 
55854ad
43b01bf
7fb4aa3
 
2752acf
 
 
 
 
 
 
c33d1b8
 
7fb4aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7eedf7
7fb4aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3b8f47
7fb4aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
# import spaces
import os
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.system('pip install ./thirdparty/DROID-SLAM')
import torch
import numpy as np
# from easydict import EasyDict
# from scripts.scripts_test_video.detect_track_video import detect_track_video
# from scripts.scripts_test_video.hawor_video import hawor_motion_estimation, hawor_infiller
# from scripts.scripts_test_video.hawor_slam import hawor_slam
# from hawor.utils.process import get_mano_faces, run_mano, run_mano_left
# from lib.eval_utils.custom_utils import load_slam_cam
# from lib.vis.run_vis2 import run_vis2_on_video, run_vis2_on_video_cam


def render_reconstruction(input_video, img_focal): 
    args = EasyDict()
    args.video_path = input_video
    args.input_type = 'file'
    args.checkpoint = './weights/hawor/checkpoints/hawor.ckpt'
    args.infiller_weight = './weights/hawor/checkpoints/infiller.pt'
    args.vis_mode = 'world'
    args.img_focal = img_focal
    
    start_idx, end_idx, seq_folder, imgfiles = detect_track_video(args)

    frame_chunks_all, img_focal = hawor_motion_estimation(args, start_idx, end_idx, seq_folder)

    hawor_slam(args, start_idx, end_idx)
    slam_path = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz")
    R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all = load_slam_cam(slam_path)

    pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid = hawor_infiller(args, start_idx, end_idx, frame_chunks_all)

    # vis sequence for this video
    hand2idx = {
        "right": 1,
        "left": 0
    }
    vis_start = 0
    vis_end = pred_trans.shape[1] - 1
            
    # get faces
    faces = get_mano_faces()
    faces_new = np.array([[92, 38, 234],
            [234, 38, 239],
            [38, 122, 239],
            [239, 122, 279],
            [122, 118, 279],
            [279, 118, 215],
            [118, 117, 215],
            [215, 117, 214],
            [117, 119, 214],
            [214, 119, 121],
            [119, 120, 121],
            [121, 120, 78],
            [120, 108, 78],
            [78, 108, 79]])
    faces_right = np.concatenate([faces, faces_new], axis=0)

    # get right hand vertices
    hand = 'right'
    hand_idx = hand2idx[hand]
    pred_glob_r = run_mano(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end])
    right_verts = pred_glob_r['vertices'][0]
    right_dict = {
            'vertices': right_verts.unsqueeze(0),
            'faces': faces_right,
        }

    # get left hand vertices
    faces_left = faces_right[:,[0,2,1]]
    hand = 'left'
    hand_idx = hand2idx[hand]
    pred_glob_l = run_mano_left(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end])
    left_verts = pred_glob_l['vertices'][0]
    left_dict = {
            'vertices': left_verts.unsqueeze(0),
            'faces': faces_left,
        }

    R_x = torch.tensor([[1,  0,  0],
                        [0, -1,  0],
                        [0,  0, -1]]).float()
    R_c2w_sla_all = torch.einsum('ij,njk->nik', R_x, R_c2w_sla_all)
    t_c2w_sla_all = torch.einsum('ij,nj->ni', R_x, t_c2w_sla_all)
    R_w2c_sla_all = R_c2w_sla_all.transpose(-1, -2)
    t_w2c_sla_all = -torch.einsum("bij,bj->bi", R_w2c_sla_all, t_c2w_sla_all)
    left_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, left_dict['vertices'].cpu())
    right_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, right_dict['vertices'].cpu())
    
    # Here we use aitviewer(https://github.com/eth-ait/aitviewer) for simple visualization.
    if args.vis_mode == 'world': 
        output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}")
        if not os.path.exists(output_pth):
            os.makedirs(output_pth)
        image_names = imgfiles[vis_start:vis_end]
        print(f"vis {vis_start} to {vis_end}")
        vis_video_path = run_vis2_on_video(left_dict, right_dict, output_pth, img_focal, image_names, R_c2w=R_c2w_sla_all[vis_start:vis_end], t_c2w=t_c2w_sla_all[vis_start:vis_end], interactive=False)
    elif args.vis_mode == 'cam':
        # output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}")
        # if not os.path.exists(output_pth):
        #     os.makedirs(output_pth)
        # image_names = imgfiles[vis_start:vis_end]
        # print(f"vis {vis_start} to {vis_end}")
        # run_vis2_on_video_cam(left_dict, right_dict, output_pth, img_focal, image_names, R_w2c=R_w2c_sla_all[vis_start:vis_end], t_w2c=t_w2c_sla_all[vis_start:vis_end])
        raise NotImplementedError

    return vis_video_path  

# @spaces.GPU()
def run_wilow_model(image, conf, IoU_threshold=0.5):
    img_cv2 = image[...,::-1]
    return img_vis.astype(np.float32)/255.0, len(detections), None       



header = ('''
<div class="embed_hidden" style="text-align: center;">
    <h1> <b>HaWoR</b>: World-Space Hand Motion Reconstruction from Egocentric Videos</h1>
    <h3>
        <a href="" target="_blank" rel="noopener noreferrer">Jinglei Zhang</a><sup>1</sup>,        
        <a href="https://jiankangdeng.github.io/" target="_blank" rel="noopener noreferrer">Jiankang Deng</a><sup>2</sup>,
        <br>
        <a href="https://scholar.google.com/citations?user=syoPhv8AAAAJ&hl=en" target="_blank" rel="noopener noreferrer">Chao Ma</a><sup>1</sup>,
        <a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>2</sup>
    </h3>
    <h3>
        <sup>1</sup>Shanghai Jiao Tong University;
        <sup>2</sup>Imperial College London
    </h3>
</div>
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
<a href='https://arxiv.org/abs/xxxx.xxxxx'><img src='https://img.shields.io/badge/Arxiv-xxxx.xxxxx-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a> 
<a href=''><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a> 
<a href='https://hawor-project.github.io/'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a> 
<a href='https://github.com/ThunderVVV/HaWoR'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a> 
''')


with gr.Blocks(title="HaWoR: World-Space Hand Motion Reconstruction from Egocentric Videos", css=".gradio-container") as demo:

    gr.Markdown(header)

    with gr.Row():
        with gr.Column():
            input_video = gr.Video(label="Input video", sources=["upload"])
            img_focal = gr.Number(label="Focal Length", value=600)
            # threshold = gr.Slider(value=0.3, minimum=0.05, maximum=0.95, step=0.05, label='Detection Confidence Threshold')
            #nms = gr.Slider(value=0.5, minimum=0.05, maximum=0.95, step=0.05, label='IoU NMS Threshold')
            submit = gr.Button("Submit", variant="primary")
        
        
        with gr.Column():
            reconstruction = gr.Video(label="Reconstruction",show_download_button=True)
            # hands_detected = gr.Textbox(label="Hands Detected")
    
        submit.click(fn=render_reconstruction, inputs=[input_video, img_focal], outputs=[reconstruction])

    with gr.Row():
        
        example_images = gr.Examples([
            ['./example/video_0.mp4'] 
            ], 
            inputs=input_video)
    
demo.launch(debug=True)