File size: 998 Bytes
a9156aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image):
    # Now directly using the PIL Image object
    inputs = processor(images=image, return_tensors="pt")
    outputs = model.generate(**inputs)
    caption = processor.decode(outputs[0], skip_special_tokens=True)
    return caption
def caption_image(image):
    """
    Takes a PIL Image input and returns a caption.
    """
    try:
        caption = generate_caption(image)
        return caption
    except Exception as e:
        return f"An error occurred: {str(e)}"
iface = gr.Interface(
    fn=caption_image,
    inputs=gr.Image(type="pil"),
    outputs="text",
    title="Image Captioning with BLIP",
    description="Upload an image to generate a caption."
)
iface.launch()