Spaces:
Sleeping
Sleeping
File size: 6,499 Bytes
e5451b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import faiss
import ast
import torch.nn.functional as F
import torch
from transformers import AutoModel, AutoTokenizer
Encoding_model = 'jinaai/jina-embeddings-v2-base-zh'
model = AutoModel.from_pretrained(Encoding_model, trust_remote_code=True, torch_dtype=torch.bfloat16)
model#.to("cuda")
similarity_model = 'Alibaba-NLP/gte-multilingual-base'
similarity_tokenizer = AutoTokenizer.from_pretrained(similarity_model)
similarity_model = AutoModel.from_pretrained(similarity_model, trust_remote_code=True)#.to("cuda")
def get_not_empty_data(df,x_column="text",y_column="label"):
df = df[df[y_column] != "[]"].reset_index(drop=True)
res_dict = {}
for idx in df.index:
if df.loc[idx,x_column] not in res_dict:
res_dict[df.loc[idx,x_column]] = ast.literal_eval(df.loc[idx,y_column])
else:
res_dict[df.loc[idx,x_column]] += ast.literal_eval(df.loc[idx,y_column])
res_dict = {k:list(set(v)) for k,v in res_dict.items()}
df_dict = pd.DataFrame({"x":res_dict.keys(),"y":res_dict.values()})
return df_dict
data_all = pd.read_excel("data_Excel_format.xlsx")
df_dict_all = get_not_empty_data(data_all)
x_dict = df_dict_all["x"].values
y_dict = df_dict_all["y"].values
def calc_scores(x):
return (x[:1] @ x[1:].T)
def get_idxs(threshold,max_len,arr):
res = np.where(arr >= threshold)[0]
if len(res)<max_len:
return res
res = res[np.argsort(-arr[res])][:3]
return res
def merge_set_to_list(set_list):
res = set()
for i in set_list:
res = res | i
return res
def get_predict_result(index,score,threshold,max_len):
score = score.flatten()
index = index.flatten()
index_of_index = np.where(score >= threshold)[0]
if len(index_of_index)>=max_len:
index_of_index = index_of_index[np.argsort(-index[index_of_index])][:3]
if len(index_of_index)==0:
return {},[]
res_index = index[index_of_index]
res = merge_set_to_list([set(i) for i in y_dict[res_index]])
return res,x_dict[res_index]
vec = np.empty(shape=[0,768],dtype="float32")
bsize = 256
with torch.no_grad():
for i in range(0,len(x),bsize):
tmp = model.encode(x[i:i+bsize])
vec = np.concatenate([vec,tmp])
index = faiss.IndexFlatIP(768)
faiss.normalize_L2(vec)
index.add(vec)
faiss.write_index(index,"all_index.faiss")
index = faiss.read_index("all_index.faiss")
def predict_label(x,threshold=0.85,n_nearest=10,max_result_len=3):
bsize=1
y_pred = []
with torch.no_grad():
for i in range(0,len(x),bsize):
sentences = x[i:i+bsize]
vec = model.encode(sentences)
faiss.normalize_L2(vec)
scores, indexes = index.search(vec,n_nearest)
x_pred = np.array([[sentences[j]]+s.tolist() for j,s in enumerate(x_dict[indexes])])
batch_dict = similarity_tokenizer(x_pred.flatten().tolist(), max_length=768, padding=True, truncation=True, return_tensors='pt')#.to("cuda")
outputs = similarity_model(**batch_dict)
dimension=768
embeddings = outputs.last_hidden_state[:, 0][:dimension]
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.view(len(x_pred),n_nearest+1,dimension).detach().cpu().numpy()
scores = [calc_scores(embeddings[b]) for b in range(embeddings.shape[0])]
pred = [get_predict_result(indexes[k],scores[k],threshold=threshold,max_len=max_result_len) for k in range(len(scores))]
y_pred.append([i[0] for i in pred])
return y_pred
CSS_Content = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
#custom_id {
border: 2px solid red;
padding: 10px;
background-color: lightgray;
}
</style>
</head>
</html>
<span style="color: red;line-height:1;">红色字体:潜在风险</span><br>
<span style="color: blue;line-height:1;">蓝色字体:权限获取</span><br>
<span style="color: purple;line-height:1;">紫色字体:数据收集</span><br>
<span style="color: green;line-height:1;">绿色字体:数据、权限管理</span><br>
<span style="color: brown;line-height:1;">棕色字体:共享、委托、转让、公开(披露)</span><br>
"""
color_dict = {"潜在风险":"red",
"权限获取":"blue",
"数据收集":"purple",
"数据、权限管理":"green",
"共享、委托、转让、公开(披露)":"brown"
}
def generate_HTML(text,threshold=0.85,n_nearest=10,max_result_len=3):
sentences = text.split("\n")
sentences = [i for i in map(lambda x:x.split("。"),sentences)]
res = CSS_Content
for paragraph in sentences:
tmp_res = []
pred_label = predict_label(paragraph,threshold,n_nearest,max_result_len)
for i,x in enumerate(pred_label):
pre = "<span"
if len(x[0])>0:
for j in color_dict.keys(): #color dict重要性递减,所以只取第一个标签的颜色
if j in x[0]:
pre += f' style="color: {color_dict[j]};line-height:1;"'
break
tmp_res.append(pre+">"+paragraph[i]+"</span>")
res += "。".join(tmp_res)
res += "<br>"
return res
with gr.Blocks() as demo:
with gr.Row():
input_text = gr.Textbox(lines=25,label="输入")
with gr.Row():
threshold = gr.Slider(minimum=0.5,maximum=0.85,value=0.75,step=0.05,interactive=True,label="相似度阈值")
n_nearest = gr.Slider(minimum=3,maximum=10,value=10,step=1,interactive=True,label="粗筛语句数量")
max_result_len = gr.Slider(minimum=1,maximum=5,value=3,step=1,interactive=True,label="精筛语句数量")
with gr.Row():
submit_button = gr.Button("检测")
with gr.Row():
output_text = gr.HTML(CSS_Content)
output_text.elem_id="custom_id"
submit_button.click(fn=generate_HTML, inputs=[input_text,threshold,n_nearest,max_result_len], outputs=output_text)
demo.launch() |