File size: 6,499 Bytes
e5451b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import warnings
warnings.filterwarnings("ignore")

import pandas as pd
import numpy as np
import faiss
import ast

import torch.nn.functional as F
import torch
from transformers import AutoModel, AutoTokenizer

Encoding_model = 'jinaai/jina-embeddings-v2-base-zh'
model = AutoModel.from_pretrained(Encoding_model, trust_remote_code=True, torch_dtype=torch.bfloat16)
model#.to("cuda")

similarity_model = 'Alibaba-NLP/gte-multilingual-base'
similarity_tokenizer = AutoTokenizer.from_pretrained(similarity_model)
similarity_model = AutoModel.from_pretrained(similarity_model, trust_remote_code=True)#.to("cuda")

def get_not_empty_data(df,x_column="text",y_column="label"):
    df = df[df[y_column] != "[]"].reset_index(drop=True)
    res_dict = {}
    for idx in df.index:
        if df.loc[idx,x_column] not in res_dict:
            res_dict[df.loc[idx,x_column]] = ast.literal_eval(df.loc[idx,y_column])
        else:
            res_dict[df.loc[idx,x_column]] += ast.literal_eval(df.loc[idx,y_column])
    res_dict = {k:list(set(v)) for k,v in res_dict.items()}
    df_dict = pd.DataFrame({"x":res_dict.keys(),"y":res_dict.values()})
    return df_dict

data_all = pd.read_excel("data_Excel_format.xlsx")
df_dict_all = get_not_empty_data(data_all)
x_dict = df_dict_all["x"].values
y_dict = df_dict_all["y"].values

def calc_scores(x):
    return (x[:1] @ x[1:].T)

def get_idxs(threshold,max_len,arr):
    res = np.where(arr >= threshold)[0]
    if len(res)<max_len:
        return res
    res = res[np.argsort(-arr[res])][:3]
    return res

def merge_set_to_list(set_list):
    res = set()
    for i in set_list:
        res = res | i
    return res


def get_predict_result(index,score,threshold,max_len):
    score = score.flatten()
    index = index.flatten()
    index_of_index = np.where(score >= threshold)[0]
    if len(index_of_index)>=max_len:
        index_of_index = index_of_index[np.argsort(-index[index_of_index])][:3]
    if len(index_of_index)==0:
        return {},[]
    res_index = index[index_of_index]
    res = merge_set_to_list([set(i) for i in y_dict[res_index]])
    return res,x_dict[res_index]

vec = np.empty(shape=[0,768],dtype="float32")
bsize = 256
with torch.no_grad():
    for i in range(0,len(x),bsize):
        tmp = model.encode(x[i:i+bsize])
        vec = np.concatenate([vec,tmp])


index = faiss.IndexFlatIP(768)
faiss.normalize_L2(vec)
index.add(vec)
faiss.write_index(index,"all_index.faiss")
index = faiss.read_index("all_index.faiss")

def predict_label(x,threshold=0.85,n_nearest=10,max_result_len=3):
    bsize=1
    y_pred = []
    with torch.no_grad():
        for i in range(0,len(x),bsize):
            sentences = x[i:i+bsize]
            vec = model.encode(sentences)
            faiss.normalize_L2(vec)
            scores, indexes = index.search(vec,n_nearest)
            x_pred = np.array([[sentences[j]]+s.tolist() for j,s in enumerate(x_dict[indexes])])
            batch_dict = similarity_tokenizer(x_pred.flatten().tolist(), max_length=768, padding=True, truncation=True, return_tensors='pt')#.to("cuda")
            outputs = similarity_model(**batch_dict)
            dimension=768
            embeddings = outputs.last_hidden_state[:, 0][:dimension]
            embeddings = F.normalize(embeddings, p=2, dim=1)
            embeddings = embeddings.view(len(x_pred),n_nearest+1,dimension).detach().cpu().numpy()
            scores = [calc_scores(embeddings[b]) for b in range(embeddings.shape[0])]

            pred = [get_predict_result(indexes[k],scores[k],threshold=threshold,max_len=max_result_len) for k in range(len(scores))]
            y_pred.append([i[0] for i in pred])
    return y_pred

CSS_Content = """  

<!DOCTYPE html>  

<html lang="en">  

<head>  

    <meta charset="UTF-8">  

    <meta name="viewport" content="width=device-width, initial-scale=1.0">  

    <style>  

        #custom_id {  

            border: 2px solid red;  

            padding: 10px;  

            background-color: lightgray;

        }

    </style>  

</head>

</html>

<span style="color: red;line-height:1;">红色字体:潜在风险</span><br>

<span style="color: blue;line-height:1;">蓝色字体:权限获取</span><br>

<span style="color: purple;line-height:1;">紫色字体:数据收集</span><br>

<span style="color: green;line-height:1;">绿色字体:数据、权限管理</span><br>

<span style="color: brown;line-height:1;">棕色字体:共享、委托、转让、公开(披露)</span><br>

"""  

color_dict = {"潜在风险":"red",
              "权限获取":"blue",
              "数据收集":"purple",
              "数据、权限管理":"green",
              "共享、委托、转让、公开(披露)":"brown"
             }

    

def generate_HTML(text,threshold=0.85,n_nearest=10,max_result_len=3):
    sentences = text.split("\n")
    sentences = [i for i in map(lambda x:x.split("。"),sentences)]
    res = CSS_Content
    for paragraph in sentences:
        tmp_res = []
        pred_label = predict_label(paragraph,threshold,n_nearest,max_result_len)
        for i,x in enumerate(pred_label):
            pre = "<span"
            if len(x[0])>0:
                for j in color_dict.keys(): #color dict重要性递减,所以只取第一个标签的颜色
                    if j in x[0]:
                        pre += f' style="color: {color_dict[j]};line-height:1;"'
                        break
            tmp_res.append(pre+">"+paragraph[i]+"</span>")
        res += "。".join(tmp_res)
        res += "<br>"
    return res

with gr.Blocks() as demo:  
    with gr.Row():  
        input_text = gr.Textbox(lines=25,label="输入")
    
    with gr.Row():
        threshold = gr.Slider(minimum=0.5,maximum=0.85,value=0.75,step=0.05,interactive=True,label="相似度阈值")
        n_nearest = gr.Slider(minimum=3,maximum=10,value=10,step=1,interactive=True,label="粗筛语句数量")
        max_result_len = gr.Slider(minimum=1,maximum=5,value=3,step=1,interactive=True,label="精筛语句数量")
    with gr.Row():
        submit_button = gr.Button("检测")  
    with gr.Row():
        output_text = gr.HTML(CSS_Content)
        output_text.elem_id="custom_id"
  
    submit_button.click(fn=generate_HTML, inputs=[input_text,threshold,n_nearest,max_result_len], outputs=output_text)

demo.launch()