Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,078 Bytes
7262fda 14af97a 7262fda 14af97a 7262fda 14af97a 7262fda 14af97a 7262fda 14af97a 7262fda 14af97a 7262fda 14af97a 7262fda 14af97a 7262fda 14af97a 7262fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
from transformers import AutoModelForCausalLM, AutoConfig, OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTModel, OPTDecoder, OPTLearnedPositionalEmbedding, OPTDecoderLayer
from typing import List, Optional, Tuple, Union
from einops import repeat
from transformers.modeling_outputs import (
CausalLMOutputWithPast,
)
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.utils import replace_return_docstrings
from transformers.modeling_outputs import BaseModelOutputWithPast
class ShapeOPTConfig(OPTConfig):
model_type = "shape_opt"
class ShapeOPT(OPTForCausalLM):
config_class = ShapeOPTConfig
def __init__(self, config: ShapeOPTConfig):
super(OPTForCausalLM, self).__init__(config)
self.model = ShapeOPTModel(config)
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
def forward(
self,
input_ids: torch.LongTensor = None,
face_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OPTForCausalLM
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids = input_ids,
face_ids = face_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0]).contiguous()
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class ShapeOPTModel(OPTModel):
config_class = ShapeOPTConfig
def __init__(self, config: ShapeOPTConfig):
super(OPTModel,self).__init__(config)
self.decoder = ShapeOPTDecoder(config)
# Initialize weights and apply final processing
self.post_init()
class ShapeOPTDecoder(OPTDecoder):
config_class = ShapeOPTConfig
def __init__(self, config: ShapeOPTConfig):
super(OPTDecoder,self).__init__(config)
self.config = config
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
self.hidden_size = config.hidden_size
self.word_embed_proj_dim = config.word_embed_proj_dim
self.n_discrete_size = config.n_discrete_size
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
self.token_embed_positions = OPTLoopEmbedding(10, config.word_embed_proj_dim, self.n_discrete_size) #padding_idx=self.padding_idx)
self.face_per_token = config.face_per_token
self.cond_length = config.cond_length
self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
face_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# OPT Decoder
# print("used my Trans")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Transformer Decoder
if input_ids is not None and inputs_embeds is not None: # when train and first generate
assert False
elif input_ids is not None:
assert not self.training
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids)
face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
self.face_per_token)
inputs_embeds += face_embeds
cond_embed_query = torch.ones((inputs_embeds.shape[0], inputs_embeds.shape[1]), device=inputs_embeds.device,
dtype=inputs_embeds.dtype).long()
inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
elif inputs_embeds is not None:
# assert self.cond and not self.training
assert not self.training
self.token_embed_positions.init_state(inputs_embeds)
total_length = inputs_embeds.shape[1] # B x length x embeding
cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
dtype=inputs_embeds.dtype).long()
inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
batch_size, seq_length = inputs_embeds.shape[:2] # seq_length not used since mask_seq_length is not used
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values_length + seq_length # not used since attention mask is input
# embed positions
if self._use_flash_attention_2:
# 2d mask is passed through the layers
assert attention_mask is not None
causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
attention_mask = (
torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if attention_mask is None
else attention_mask
)
else:
raise ValueError("Only flash_attention_2 is supported in MeshAnything")
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
hidden_states = inputs_embeds + pos_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_attention_mask,
head_mask[idx] if head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class OPTLoopEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, n_discrete_size: int):
super().__init__(num_embeddings, embedding_dim)
self.state = None
self.loop_state = None
self.n_discrete_size = n_discrete_size + 3 # for padding
def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
if face_ids is not None:
return super().forward(face_ids)
assert input_ids.shape[1] == 1, "Only one token is allowed for loop embedding"
assert self.state is not None, "State is not initialized"
# zero as beginning
batch_size = input_ids.shape[0]
face_ids = input_ids.clone().detach()
for cur_batch_index in range(batch_size):
cur_ids = input_ids[cur_batch_index]
idx_in_extra = torch.isin(cur_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
if idx_in_extra:
self.state[cur_batch_index] = 9 # init
self.loop_state[cur_batch_index] = 0
else:
if cur_ids == self.n_discrete_size:
face_ids[cur_batch_index] = 3
self.state[cur_batch_index] = 9 # init
self.loop_state[cur_batch_index] = 0
else:
if self.state[cur_batch_index] == 0:
face_ids[cur_batch_index] = 7 + self.loop_state[cur_batch_index] % 3
else:
self.state[cur_batch_index] -= 1
face_ids[cur_batch_index] = 4 + self.loop_state[cur_batch_index] % 3
self.loop_state[cur_batch_index] += 1
return super().forward(face_ids)
def init_state(self, template_tensor):
batch_size = template_tensor.shape[0]
self.state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
self.state[...] = 9
self.loop_state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
class OPTFacePositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
if face_ids is not None:
return super().forward(face_ids)
assert input_ids.shape[1] == 1
idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
cur_ids = input_ids.clone().detach()
cur_index = (attention_mask.sum(dim=1, keepdim=True) - 2) % face_per_token + 3
cur_ids[~idx_in_extra]=cur_index[~idx_in_extra]
return super().forward(cur_ids)
AutoConfig.register("shape_opt", ShapeOPTConfig)
AutoModelForCausalLM.register(ShapeOPTConfig, ShapeOPT)
|