File size: 5,316 Bytes
788d88f
 
 
 
21be15e
 
788d88f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7a8c5
788d88f
 
 
 
 
 
 
 
df5f457
788d88f
 
 
 
 
 
 
 
df5f457
788d88f
 
 
 
 
 
 
 
df5f457
788d88f
 
 
 
 
 
 
 
df5f457
788d88f
 
 
 
 
 
 
 
df5f457
788d88f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load

import pandas as pd

api = HfApi()

def get_user_models(hf_username, env_tag, lib_tag):
    """
    List the Reinforcement Learning models
    from user given environment and lib
    :param hf_username: User HF username
    :param env_tag: Environment tag
    :param lib_tag: Library tag
    """
    api = HfApi()
    models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])

    user_model_ids = [x.modelId for x in models]
    return user_model_ids


def get_metadata(model_id):
  """
  Get model metadata (contains evaluation data)
  :param model_id
  """
  try:
    readme_path = hf_hub_download(model_id, filename="README.md")
    return metadata_load(readme_path)
  except requests.exceptions.HTTPError:
    # 404 README.md not found
    return None


def parse_metrics_accuracy(meta):
  """
  Get model results and parse it
  :param meta: model metadata
  """
  if "model-index" not in meta:
    return None
  result = meta["model-index"][0]["results"]
  metrics = result[0]["metrics"]
  accuracy = metrics[0]["value"]
  
  return accuracy


def parse_rewards(accuracy):
  """
  Parse mean_reward and std_reward
  :param accuracy: model results
  """
  default_std = -1000
  default_reward= -1000
  if accuracy !=  None:
      accuracy = str(accuracy)
      parsed =  accuracy.split(' +/- ')
      if len(parsed)>1:
          mean_reward = float(parsed[0])
          std_reward =  float(parsed[1])
      elif len(parsed)==1: #only mean reward   
          mean_reward = float(parsed[0])
          std_reward =  float(0)
      else: 
          mean_reward = float(default_std)
          std_reward = float(default_reward)
  else:
      mean_reward = float(default_std)
      std_reward = float(default_reward)
  
  return mean_reward, std_reward

def calculate_best_result(user_model_ids):
  """
  Calculate the best results of a unit
  best_result = mean_reward - std_reward
  :param user_model_ids: RL models of a user
  """
  best_result = -100
  best_model_id = ""
  for model in user_model_ids:
    meta = get_metadata(model)
    if meta is None:
      continue
    accuracy = parse_metrics_accuracy(meta)
    mean_reward, std_reward = parse_rewards(accuracy)
    result = mean_reward - std_reward
    if result > best_result:
      best_result = result
      best_model_id = model
      
  return best_result, best_model_id

def check_if_passed(model):
  """
  Check if result >= baseline
  to know if you pass
  :param model: user model
  """
  if model["best_result"] >= model["min_result"]:
    model["passed"] = True

def test_(hf_username):
  results_certification = [
      {
          "unit": "Unit 1",
          "env": "LunarLander-v2",
          "library": "stable-baselines3",
          "min_result": 200,
          "best_result": 0,
          "best_model_id": "",
          "passed": False
      },
    {
          "unit": "Bonus Unit 1",
          "env": "ML-Agents-Huggy",
          "library": "ml-agents",
          "min_result": -100,
          "best_result": 0,
          "best_model_id": "",
          "passed": False
    },
  {
          "unit": "Unit 2",
          "env": "Taxi-v3",
          "library": "q-learning",
          "min_result": 5,
          "best_result": 0,
          "best_model_id": "",
          "passed": False
  },
  {
          "unit": "Unit 3",
          "env": "SpaceInvadersNoFrameskip-v4",
          "library": "stable-baselines3",
          "min_result": 200,
          "best_result": 0,
          "best_model_id": "",
          "passed": False
  },
  {
          "unit": "Unit 4",
          "env": "CartPole-v1",
          "library": "reinforce",
          "min_result": 350,
          "best_result": 0,
          "best_model_id": "",
          "passed": False
  },
    {
          "unit": "Unit 4",
          "env": "Pixelcopter-PLE-v0",
          "library": "reinforce",
          "min_result": 5,
          "best_result": 0,
          "best_model_id": "",
          "passed": False
    },
  ] 
  for unit in results_certification:
    # Get user model
    user_models = get_user_models(hf_username, unit['env'], unit['library'])
    print(user_models)
    # Calculate the best result and get the best_model_id
    best_result, best_model_id = calculate_best_result(user_models)

    # Save best_result and best_model_id
    unit["best_result"] = best_result
    unit["best_model_id"] = best_model_id

    # Based on best_result do we pass the unit?
    check_if_passed(unit)
    
  print(results_certification)
 
  df = pd.DataFrame (results_certification)

  return df


with gr.Blocks() as demo:
  hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username")
  email = gr.Textbox(placeholder="thomas.simonini@huggingface.co", label="Your Email (to receive your certificate)")
  check_progress_button = gr.Button(value="Check my progress")
  output = gr.components.Dataframe(headers=["Unit", "Environment", "Library", "Baseline", "Your best result", "Your best model id", "Pass?"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"])

  check_progress_button.click(fn=test_, inputs=hf_username, outputs=output)

demo.launch()