File size: 52,426 Bytes
c5f0a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


import os
import sys
from random import randint
import random
import time
import uuid
from datetime import datetime
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import logging
import logging.handlers
import pickle
from contextlib import contextmanager

tokens = ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","I","J","K","L","M",
    "N","O","P","Q","R","S","T","U","V","W","X","Y","Z","0","1","2","3","4","5","6","7","8","9"]
numTokens = tokens[:10]
alphaTokens = tokens[10:36]
loCaseChars = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k","l","m","n","o",
"p","q","r","s","t","u","v","w","x","y","z"]

typeInt = "int"
typeFloat = "float"
typeString = "string"

secInMinute = 60
secInHour = 60 * 60
secInDay = 24 * secInHour
secInWeek = 7 * secInDay
secInYear = 365 * secInDay
secInMonth = secInYear / 12

minInHour = 60
minInDay = 24 * minInHour

ftPerYard = 3
ftPerMile = ftPerYard * 1760


def genID(size):
    """
    generates ID

    Parameters
        size : size of ID
    """
    id = ""
    for i in range(size):
        id = id + selectRandomFromList(tokens)
    return id

def genIdList(numId, idSize):
    """
    generate list of IDs

    Parameters:
        numId: number of Ids
        idSize: ID size
    """
    iDs = []
    for i in range(numId):
        iDs.append(genID(idSize))
    return iDs

def genNumID(size):
    """
    generates ID consisting of digits onl

    Parameters
        size : size of ID
    """
    id = ""
    for i in range(size):
        id = id + selectRandomFromList(numTokens)
    return id

def genLowCaseID(size):
    """
    generates ID consisting of lower case chars

    Parameters
        size : size of ID
    """
    id = ""
    for i in range(size):
        id = id + selectRandomFromList(loCaseChars)
    return id

def genNumIdList(numId, idSize):
    """
    generate list of numeric IDs

    Parameters:
        numId: number of Ids
        idSize: ID size
    """
    iDs = []
    for i in range(numId):
        iDs.append(genNumID(idSize))
    return iDs

def genNameInitial():
    """
    generate name initial
    """
    return selectRandomFromList(alphaTokens) + selectRandomFromList(alphaTokens)

def genPhoneNum(arCode):
    """
    generates phone number

    Parameters
        arCode: area code
    """
    phNum = genNumID(7)
    return arCode + str(phNum)

def selectRandomFromList(ldata):
    """
    select an element randomly from a lis

    Parameters
        ldata : list data
    """
    return ldata[randint(0, len(ldata)-1)]

def selectOtherRandomFromList(ldata, cval):
    """
    select an element randomly from a list excluding the given one

    Parameters
        ldata : list data
        cval : value to be excluded
    """
    nval = selectRandomFromList(ldata)
    while nval == cval:
        nval = selectRandomFromList(ldata)
    return nval

def selectRandomSubListFromList(ldata, num):
    """
    generates random sublist from a list without replacemment

    Parameters
        ldata : list data
        num : output list size
    """
    assertLesser(num, len(ldata), "size of sublist to be sampled greater than or equal to main list")
    i = randint(0, len(ldata)-1)
    sel = ldata[i]
    selSet = {i}
    selList = [sel]
    while (len(selSet) < num):
        i = randint(0, len(ldata)-1)
        if (i not in selSet):
            sel = ldata[i]
            selSet.add(i)
            selList.append(sel)
    return selList

def selectRandomSubListFromListWithRepl(ldata, num):
    """
    generates random sublist from a list with replacemment

    Parameters
        ldata : list data
        num : output list size
    """
    return list(map(lambda i : selectRandomFromList(ldata), range(num)))

def selectRandomFromDict(ddata):
    """
    select an element randomly from a dictionary

    Parameters
        ddata : dictionary data
    """
    dkeys = list(ddata.keys())
    dk = selectRandomFromList(dkeys)
    el = (dk, ddata[dk])
    return el

def setListRandomFromList(ldata, ldataRepl):
    """
    sets some elents in the first list randomly with elements from the second list

    Parameters
        ldata : list data
        ldataRepl : list with replacement data
    """
    l = len(ldata)
    selSet = set()
    for d in ldataRepl:
        i = randint(0, l-1)
        while i in selSet:
            i = randint(0, l-1)
        ldata[i] = d
        selSet.add(i)

def genIpAddress():
    """
    generates IP address
    """
    i1 = randint(0,256)
    i2 = randint(0,256)
    i3 = randint(0,256)
    i4 = randint(0,256)
    ip = "%d.%d.%d.%d" %(i1,i2,i3,i4)
    return ip

def curTimeMs():
    """
    current time in ms
    """
    return int((datetime.utcnow() - datetime(1970,1,1)).total_seconds() * 1000)

def secDegPolyFit(x1, y1, x2, y2, x3, y3):
    """
    second deg polynomial 	

    Parameters
        x1 : 1st point x
        y1 : 1st point y
        x2 : 2nd point x
        y2 : 2nd point y
        x3 : 3rd point x
        y3 : 3rd point y
    """
    t = (y1 - y2) / (x1 - x2)
    a = t - (y2 - y3) / (x2 - x3)
    a = a / (x1 - x3)
    b = t - a * (x1 + x2)
    c = y1 - a * x1 * x1 - b * x1
    return (a, b, c)

def range_limit(val, minv, maxv):
    """
    range limit a value

    Parameters
        val : data value
        minv : minimum
        maxv : maximum
    """
    if (val < minv):
        val = minv
    elif (val > maxv):
        val = maxv
    return val

def isInRange(val, minv, maxv):
    """
    checks if within range

    Parameters
        val : data value
        minv : minimum
        maxv : maximum
    """
    return val >= minv and val <= maxv

def stripFileLines(filePath, offset):
    """
    strips number of chars from both ends

    Parameters
        filePath : file path
        offset : offset from both ends of  line 
    """
    fp = open(filePath, "r")
    for line in fp:
        stripped = line[offset:len(line) - 1 - offset]
        print (stripped)
    fp.close()

def genLatLong(lat1, long1, lat2, long2):
    """
    generate lat log within limits

    Parameters
        lat1 : lat of 1st point
        long1 : long of 1st point
        lat2 : lat of 2nd point
        long2 : long of 2nd point
    """
    lat = lat1 + (lat2 - lat1) * random.random()
    longg = long1 + (long2 - long1) * random.random()
    return (lat, longg)

def geoDistance(lat1, long1, lat2, long2):
    """
    find geo distance in ft

    Parameters
        lat1 : lat of 1st point
        long1 : long of 1st point
        lat2 : lat of 2nd point
        long2 : long of 2nd point
    """
    latDiff = math.radians(lat1 - lat2)
    longDiff = math.radians(long1 - long2)
    l1 = math.sin(latDiff/2.0)
    l2 = math.sin(longDiff/2.0)
    l3 = math.cos(math.radians(lat1))
    l4 = math.cos(math.radians(lat2))
    a = l1 * l1 + l3 * l4 * l2 * l2
    l5 = math.sqrt(a)
    l6 = math.sqrt(1.0 - a)
    c = 2.0 * math.atan2(l5, l6)
    r = 6371008.8 * 3.280840
    return c * r

def minLimit(val, limit):
    """
    min limit
    Parameters
    """
    if (val < limit):
        val = limit
    return val;

def maxLimit(val, limit):
    """
    max limit
    Parameters
    """
    if (val > limit):
        val = limit
    return val;

def rangeSample(val, minLim, maxLim):
    """
    if out side range sample within range

    Parameters
        val : value
        minLim : minimum
        maxLim : maximum
    """
    if val < minLim or val > maxLim:
        val = randint(minLim, maxLim)
    return val

def genRandomIntListWithinRange(size, minLim, maxLim):
    """
    random unique list of integers within range

    Parameters
        size : size of returned list
        minLim : minimum
        maxLim : maximum
    """
    values = set()
    for i in range(size):
        val = randint(minLim, maxLim)
        while val not in values:
            values.add(val)
    return list(values)

def preturbScalar(value, vrange):
    """
    preturbs a mutiplicative value within range

    Parameters
        value : data value
        vrange : value delta  fraction
    """
    scale = 1.0 - vrange + 2 * vrange * random.random() 
    return value * scale

def preturbScalarAbs(value, vrange):
    """
    preturbs an absolute value within range

    Parameters
        value : data value
        vrange : value delta  absolute
    """
    delta = - vrange + 2.0 * vrange * random.random() 
    return value + delta

def preturbVector(values, vrange):
    """
    preturbs a list within range

    Parameters
        values : list data
        vrange : value delta  fraction
    """
    nValues = list(map(lambda va: preturbScalar(va, vrange), values))
    return nValues

def randomShiftVector(values, smin, smax):
    """
    shifts  a list by a random quanity with a range

    Parameters
        values : list data
        smin : samplinf minimum
        smax : sampling maximum
    """
    shift = np.random.uniform(smin, smax)
    return list(map(lambda va: va + shift, values))

def floatRange(beg, end, incr):
    """
    generates float range

    Parameters
        beg :range begin
        end: range end
        incr : range increment
    """
    return list(np.arange(beg, end, incr))

def shuffle(values, *numShuffles):
    """
    in place shuffling with swap of pairs

    Parameters
        values : list data
        numShuffles : parameter list for number of shuffles
    """
    size = len(values)
    if len(numShuffles) == 0:
        numShuffle = int(size / 2)
    elif len(numShuffles) == 1:
        numShuffle = numShuffles[0]
    else:
        numShuffle = randint(numShuffles[0], numShuffles[1])
    print("numShuffle {}".format(numShuffle))
    for i in range(numShuffle):
        first = random.randint(0, size - 1)
        second = random.randint(0, size - 1)
        while first == second:
            second = random.randint(0, size - 1)
        tmp = values[first]
        values[first] = values[second]
        values[second] = tmp


def splitList(itms, numGr):
    """
    splits a list into sub lists of approximately equal size, with items in sublists randomly chod=sen

    Parameters
        itms ; list of values		
        numGr : no of groups
    """
    tcount = len(itms)
    cItems = list(itms)
    sz = int(len(cItems) / numGr)
    groups = list()
    count = 0
    for i in range(numGr):
        if (i == numGr - 1):
            csz = tcount - count
        else:
            csz = sz + randint(-2, 2)
            count += csz
        gr = list()
        for  j in range(csz):
            it = selectRandomFromList(cItems)
            gr.append(it)
            cItems.remove(it)
        groups.append(gr)
    return groups

def multVector(values, vrange):
    """
    multiplies a list within value  range

    Parameters
        values : list of values
        vrange : fraction of vaue to be used to update
    """
    scale = 1.0 - vrange + 2 * vrange * random.random()
    nValues = list(map(lambda va: va * scale, values))
    return nValues

def weightedAverage(values, weights):
    """
    calculates weighted average

    Parameters
        values : list of values
        weights : list of weights
    """		
    assert len(values) == len(weights), "values and weights should be same size"
    vw = zip(values, weights)
    wva = list(map(lambda e : e[0] * e[1], vw))
    #wa = sum(x * y for x, y in vw) / sum(weights)
    wav = sum(wva) / sum(weights)
    return wav

def extractFields(line, delim, keepIndices):
    """
    breaks a line into fields and keeps only specified fileds and returns new line

    Parameters
        line ; deli separated string
        delim : delemeter
        keepIndices : list of indexes to fields to be retained
    """
    items = line.split(delim)
    newLine = []
    for i in keepIndices:
        newLine.append(line[i])
    return delim.join(newLine)

def remFields(line, delim, remIndices):
    """
    removes fields from delim separated string

    Parameters
        line ; delemeter separated string
        delim : delemeter
        remIndices : list of indexes to fields to be removed
    """
    items = line.split(delim)
    newLine = []
    for i in range(len(items)):
        if not arrayContains(remIndices, i):
            newLine.append(line[i])
    return delim.join(newLine)

def extractList(data, indices):
    """
    extracts list from another list, given indices

    Parameters
        remIndices : list data
        indices : list of indexes to fields to be retained
    """
    if areAllFieldsIncluded(data, indices):
        exList = data.copy()
        #print("all indices")
    else:
        exList = list()
        le = len(data)
        for i in indices:
            assert i < le , "index {} out of bound {}".format(i, le)
            exList.append(data[i])

    return exList

def arrayContains(arr, item):
    """
    checks if array contains an item 

    Parameters
        arr : list data
        item : item to search
    """
    contains = True
    try:
        arr.index(item)
    except ValueError:
        contains = False
    return contains

def strToIntArray(line, delim=","):
    """
    int array from delim separated string

    Parameters
        line ; delemeter separated string
    """
    arr = line.split(delim)
    return [int(a) for a in arr]

def strToFloatArray(line, delim=","):
    """
    float array from delim separated string

    Parameters
        line ; delemeter separated string
    """
    arr = line.split(delim)
    return [float(a) for a in arr]

def strListOrRangeToIntArray(line):
    """
    int array from delim separated string or range

    Parameters
        line ; delemeter separated string
    """
    varr = line.split(",")
    if (len(varr) > 1):
        iarr =  list(map(lambda v: int(v), varr))
    else:
        vrange = line.split(":")
        if (len(vrange) == 2):
            lo = int(vrange[0])
            hi = int(vrange[1])
            iarr = list(range(lo, hi+1))
        else:
            iarr = [int(line)]
    return iarr

def toStr(val, precision):
    """
    converts any type to string	

    Parameters
        val : value
        precision ; precision for float value
    """
    if type(val) == float or type(val) == np.float64 or type(val) == np.float32:
        format = "%" + ".%df" %(precision)
        sVal = format %(val)
    else:
        sVal = str(val)
    return sVal

def toStrFromList(values, precision, delim=","):
    """
    converts list of any type to delim separated string

    Parameters
        values : list data
        precision ; precision for float value
        delim : delemeter
    """
    sValues = list(map(lambda v: toStr(v, precision), values))
    return delim.join(sValues)

def toIntList(values):
    """
    convert to int list

    Parameters
        values : list data
    """
    return list(map(lambda va: int(va), values))

def toFloatList(values):
    """
    convert to float list

    Parameters
        values : list data
    """
    return list(map(lambda va: float(va), values))

def toStrList(values, precision=None):
    """
    convert to string list

    Parameters
        values : list data
        precision ; precision for float value
    """
    return list(map(lambda va: toStr(va, precision), values))

def toIntFromBoolean(value):
    """
    convert to int

    Parameters
        value : boolean value
    """
    ival = 1 if value else 0
    return ival

def typedValue(val, dtype=None):
    """
    return typed value given string, discovers data type if not specified

    Parameters
        val : value
        dtype : data type
    """
    tVal = None

    if dtype is not None:
        if dtype == "num":
            dtype = "int" if dtype.find(".") == -1 else "float"

        if dtype == "int":
            tVal = int(val)
        elif dtype == "float":
            tVal = float(val)
        elif dtype == "bool":
            tVal = bool(val)
        else:
            tVal = val
    else:
        if type(val) == str:
            lVal = val.lower()

            #int
            done = True
            try:
                tVal = int(val)
            except ValueError:
                done = False

            #float
            if not done:
                done = True
                try:
                    tVal = float(val)
                except ValueError:
                    done = False

            #boolean
            if not done:
                done = True
                if lVal == "true":
                    tVal = True
                elif lVal == "false":
                    tVal = False
                else:
                    done = False
            #None		
            if not done:
                if lVal == "none":
                    tVal = None
                else:
                    tVal = val
        else:
            tVal = val

    return tVal

def getAllFiles(dirPath):
    """
    get all files recursively

    Parameters
        dirPath : directory path
    """
    filePaths = []
    for (thisDir, subDirs, fileNames) in os.walk(dirPath):
        for fileName in fileNames:
            filePaths.append(os.path.join(thisDir, fileName))
    filePaths.sort()
    return filePaths

def getFileContent(fpath, verbose=False):
    """
    get file contents in directory

    Parameters
        fpath ; directory path
        verbose : verbosity flag
    """
    # dcument list
    docComplete  = []
    filePaths = getAllFiles(fpath)

    # read files
    for filePath in filePaths:
        if verbose:
            print("next file " + filePath)
        with open(filePath, 'r') as contentFile:
            content = contentFile.read()
            docComplete.append(content)
    return (docComplete, filePaths)

def getOneFileContent(fpath):
    """
    get one file contents

    Parameters
        fpath : file path
    """
    with open(fpath, 'r') as contentFile:
        docStr = contentFile.read()
    return docStr

def getFileLines(dirPath, delim=","):
    """
    get lines from a file

    Parameters
        dirPath : file path
        delim : delemeter
    """
    lines = list()
    for li in fileRecGen(dirPath, delim):
        lines.append(li)
    return lines

def getFileSampleLines(dirPath, percen, delim=","):
    """
    get sampled lines from a file

    Parameters
        dirPath : file path
        percen : sampling percentage
        delim : delemeter
    """
    lines = list()
    for li in fileRecGen(dirPath, delim):
        if randint(0, 100) < percen:
            lines.append(li)
    return lines

def getFileColumnAsString(dirPath, index, delim=","):
    """
    get string column from a file

    Parameters
        dirPath : file path
        index : index
        delim : delemeter
    """
    fields = list()
    for rec in fileRecGen(dirPath, delim):
        fields.append(rec[index])
    #print(fields)	
    return fields

def getFileColumnsAsString(dirPath, indexes, delim=","):
    """
    get multiple string columns from a file

    Parameters
        dirPath : file path
        indexes : indexes of columns
        delim : delemeter
    """
    nindex = len(indexes)
    columns = list(map(lambda i : list(), range(nindex)))
    for rec in fileRecGen(dirPath, delim):
        for i in range(nindex):
            columns[i].append(rec[indexes[i]])
    return columns

def getFileColumnAsFloat(dirPath, index, delim=","):
    """
    get float fileds from a file

    Parameters
        dirPath : file path
        index : index
        delim : delemeter
    """
    #print("{}  {}".format(dirPath, index))
    fields = getFileColumnAsString(dirPath, index, delim)
    return list(map(lambda v:float(v), fields))

def getFileColumnAsInt(dirPath, index, delim=","):
    """
    get float fileds from a file

    Parameters
        dirPath : file path
        index : index
        delim : delemeter
    """
    fields = getFileColumnAsString(dirPath, index, delim)
    return list(map(lambda v:int(v), fields))

def getFileAsIntMatrix(dirPath, columns, delim=","):
    """
    extracts int matrix from csv file given column indices with each row being  concatenation of 
    extracted column values row size = num of columns

    Parameters
        dirPath : file path
        columns : indexes of columns
        delim : delemeter
    """
    mat = list()
    for rec in  fileSelFieldsRecGen(dirPath, columns, delim):
        mat.append(asIntList(rec))
    return mat

def getFileAsFloatMatrix(dirPath, columns, delim=","):
    """
    extracts float matrix from csv file given column indices with each row being concatenation of  
    extracted column values row size = num of columns
    Parameters
        dirPath : file path
        columns : indexes of columns
        delim : delemeter
    """
    mat = list()
    for rec in  fileSelFieldsRecGen(dirPath, columns, delim):
        mat.append(asFloatList(rec))
    return mat

def getFileAsFloatColumn(dirPath):
    """
    grt float list from a file with one float per row
    Parameters
        dirPath : file path
    """
    flist = list()
    for rec in fileRecGen(dirPath, None):
        flist.append(float(rec))
    return flist

def getFileAsFiltFloatMatrix(dirPath, filt, columns, delim=","):
    """
    extracts float matrix from csv file given row filter and column indices with each row being 
    concatenation of  extracted column values row size = num of columns
    Parameters
        dirPath : file path
        columns : indexes of columns
        filt : row filter lambda
        delim : delemeter
    """
    mat = list()
    for rec in  fileFiltSelFieldsRecGen(dirPath, filt, columns, delim):
        mat.append(asFloatList(rec))
    return mat

def getFileAsTypedRecords(dirPath, types, delim=","):
    """
    extracts typed records from csv file with each row being concatenation of  
    extracted column values 
    Parameters
        dirPath : file path
        types : data types
        delim : delemeter
    """
    (dtypes, cvalues) = extractTypesFromString(types)
    tdata = list()
    for rec in  fileRecGen(dirPath, delim):
        trec = list()
        for index, value in enumerate(rec):
            value = __convToTyped(index, value, dtypes)
            trec.append(value)
        tdata.append(trec)
    return tdata


def getFileColsAsTypedRecords(dirPath, columns, types, delim=","):
    """
    extracts typed records from csv file given column indices with each row being concatenation of  
    extracted column values 
    Parameters
    Parameters
        dirPath : file path
        columns : column indexes
        types : data types
        delim : delemeter
    """
    (dtypes, cvalues) = extractTypesFromString(types)
    tdata = list()
    for rec in  fileSelFieldsRecGen(dirPath, columns, delim):
        trec = list()
        for indx, value in enumerate(rec):
            tindx = columns[indx]
            value = __convToTyped(tindx, value, dtypes)
            trec.append(value)
        tdata.append(trec)
    return tdata

def getFileColumnsMinMax(dirPath, columns, dtype, delim=","):
    """
    extracts numeric matrix from csv file given column indices. For each column return min and max
    Parameters
        dirPath : file path
        columns : column indexes
        dtype : data type
        delim : delemeter
    """
    dtypes = list(map(lambda c : str(c) + ":" + dtype, columns))
    dtypes = ",".join(dtypes)
    #print(dtypes)

    tdata = getFileColsAsTypedRecords(dirPath, columns, dtypes, delim)
    minMax = list()
    ncola = len(tdata[0])
    ncole = len(columns)
    assertEqual(ncola, ncole, "actual no of columns different from expected")

    for ci in range(ncole):	
        vmin = sys.float_info.max
        vmax = sys.float_info.min
        for r in tdata:
            cv = r[ci]
            vmin = cv if cv < vmin else vmin
            vmax = cv if cv > vmax else vmax
        mm = (vmin, vmax, vmax - vmin)
        minMax.append(mm)

    return minMax


def getRecAsTypedRecord(rec, types, delim=None):
    """
    converts record to  typed records 
    Parameters
        rec : delemeter separate string or list of string
        types : field  data types
        delim : delemeter
    """	
    if delim is not None:
        rec = rec.split(delim)
    (dtypes, cvalues) = extractTypesFromString(types)
    #print(types)
    #print(dtypes)
    trec = list()
    for ind, value in enumerate(rec):
        tvalue = __convToTyped(ind, value, dtypes)
        trec.append(tvalue)
    return trec

def __convToTyped(index, value, dtypes):
    """
    convert to typed value 
    Parameters
        index : index in type list
        value : data value
        dtypes : data type list
    """
    #print(index, value)
    dtype = dtypes[index]
    tvalue = value
    if dtype == "int":
        tvalue = int(value)
    elif dtype == "float":
        tvalue = float(value)
    return tvalue



def extractTypesFromString(types):
    """
    extracts column data types and set values for categorical variables 
    Parameters
        types : encoded type information
    """
    ftypes = types.split(",")
    dtypes = dict()
    cvalues = dict()
    for ftype in ftypes:
        items = ftype.split(":") 
        cindex = int(items[0])
        dtype = items[1]
        dtypes[cindex] = dtype
        if len(items) == 3:
            sitems = items[2].split()
            cvalues[cindex] = sitems
    return (dtypes, cvalues)

def getMultipleFileAsInttMatrix(dirPathWithCol,  delim=","):
    """
    extracts int matrix from from csv files given column index for each file. 
    num of columns  = number of rows in each file and num of rows = number of files
    Parameters
        dirPathWithCol: list of file path and collumn index pair
        delim : delemeter
    """
    mat = list()
    minLen = -1
    for path, col in dirPathWithCol:
        colVals = getFileColumnAsInt(path, col, delim)
        if minLen < 0 or len(colVals) < minLen:
            minLen = len(colVals)
        mat.append(colVals)

    #make all same length
    mat = list(map(lambda li:li[:minLen], mat))
    return mat

def getMultipleFileAsFloatMatrix(dirPathWithCol,  delim=","):
    """
    extracts float matrix from from csv files given column index for each file. 
    num of columns  = number of rows in each file and num of rows = number of files
    Parameters
        dirPathWithCol: list of file path and collumn index pair
        delim : delemeter
    """
    mat = list()
    minLen = -1
    for path, col in dirPathWithCol:
        colVals = getFileColumnAsFloat(path, col, delim)
        if minLen < 0 or len(colVals) < minLen:
            minLen = len(colVals)
        mat.append(colVals)

    #make all same length
    mat = list(map(lambda li:li[:minLen], mat))
    return mat

def writeStrListToFile(ldata, filePath, delem=","):
    """
    writes list of dlem separated string or list of list of string to afile

    Parameters
        ldata : list data
        filePath : file path
        delim : delemeter
    """
    with open(filePath, "w") as fh:
        for r in ldata:
            if type(r) == list:
                r = delem.join(r)
            fh.write(r + "\n")

def writeFloatListToFile(ldata, prec, filePath):
    """
    writes float list to file, one value per line

    Parameters
        ldata : list data
        prec : precision
        filePath : file path
    """
    with open(filePath, "w") as fh:
        for d in ldata:
            fh.write(formatFloat(prec, d) + "\n")


def takeFirst(elems):
    """
    return fisrt item
    Parameters
        elems : list of data 
    """
    return elems[0]

def takeSecond(elems):
    """
    return 2nd element
    Parameters
        elems : list of data 
    """
    return elems[1]

def takeThird(elems):
    """
    returns 3rd element
    Parameters
        elems : list of data 
    """
    return elems[2]

def addToKeyedCounter(dCounter, key, count=1):
    """
    add to to keyed counter
    Parameters
        dCounter : dictionary of counters
        key : dictionary key
        count : count to add
    """
    curCount = dCounter.get(key, 0)
    dCounter[key] = curCount + count

def incrKeyedCounter(dCounter, key):
    """
    increment keyed counter
    Parameters
        dCounter : dictionary of counters
        key : dictionary key
    """
    addToKeyedCounter(dCounter, key, 1)

def appendKeyedList(dList, key, elem):
    """
    keyed list
    Parameters
        dList : dictionary of lists
        key : dictionary key
        elem : value to append
    """
    curList = dList.get(key, [])
    curList.append(elem)
    dList[key] = curList

def isNumber(st):
    """
    Returns True is string is a number
    Parameters
        st : string value
    """
    return st.replace('.','',1).isdigit()

def removeNan(values):
    """
    removes nan from list
    Parameters
        values : list data
    """
    return list(filter(lambda v: not math.isnan(v), values))

def fileRecGen(filePath, delim = ","):
    """
    file record generator
    Parameters
        filePath ; file path
        delim : delemeter
    """
    with open(filePath, "r") as fp:
        for line in fp:	
            line = line[:-1]
            if delim is not None:
                line = line.split(delim)
            yield line

def fileSelFieldsRecGen(dirPath, columns, delim=","):
    """
    file record generator given column indices 
    Parameters
        filePath ; file path
        columns : column indexes as int array or coma separated string
        delim : delemeter
    """
    if type(columns) == str:
        columns = strToIntArray(columns, delim)
    for rec in fileRecGen(dirPath, delim):
        extracted = extractList(rec, columns)
        yield extracted

def fileFiltRecGen(filePath, filt, delim = ","):
    """
    file record generator with  row filter applied
    Parameters
        filePath ; file path
        filt : row filter
        delim : delemeter
    """
    with open(filePath, "r") as fp:
        for line in fp:	
            line = line[:-1]
            if delim is not None:
                line = line.split(delim)
            if filt(line):
                yield line

def fileFiltSelFieldsRecGen(filePath, filt, columns, delim = ","):
    """
    file record generator with  row and column filter applied
    Parameters
        filePath ; file path
        filt : row filter
        columns : column indexes as int array or coma separated string
        delim : delemeter
    """
    columns = strToIntArray(columns, delim)
    with open(filePath, "r") as fp:
        for line in fp:	
            line = line[:-1]
            if delim is not None:
                line = line.split(delim)
            if filt(line):
                selected = extractList(line, columns)
                yield selected

def fileTypedRecGen(filePath, ftypes, delim = ","):
    """
    file typed record generator
    Parameters
        filePath ; file path
        ftypes : list of field types
        delim : delemeter
    """
    with open(filePath, "r") as fp:
        for line in fp:	
            line = line[:-1]
            line = line.split(delim)
            for i in range(0, len(ftypes), 2):
                ci = ftypes[i]
                dtype = ftypes[i+1]
                assertLesser(ci, len(line), "index out of bound")
                if dtype == "int":
                    line[ci] = int(line[ci])
                elif dtype == "float":
                    line[ci] = float(line[ci])
                else:
                    exitWithMsg("invalid data type")
            yield line

def fileMutatedFieldsRecGen(dirPath, mutator, delim=","):
    """
    file record generator with some columns mutated 
    Parameters
        dirPath ; file path
        mutator : row field mutator
        delim : delemeter
    """
    for rec in fileRecGen(dirPath, delim):
        mutated = mutator(rec)
        yield mutated

def tableSelFieldsFilter(tdata, columns):
    """
    gets tabular data for selected columns 
    Parameters
        tdata : tabular data
        columns : column indexes
    """
    if areAllFieldsIncluded(tdata[0], columns):
        ntdata = tdata
    else:
        ntdata = list()
        for rec in tdata:
            #print(rec)
            #print(columns)
            nrec = extractList(rec, columns)
            ntdata.append(nrec)
    return ntdata


def areAllFieldsIncluded(ldata, columns):
    """
    return True id all indexes are in the columns
    Parameters
        ldata : list data
        columns : column indexes
    """
    return list(range(len(ldata))) == columns

def asIntList(items):
    """
    returns int list
    Parameters
        items : list data
    """
    return [int(i) for i in items]

def asFloatList(items):
    """
    returns float list
    Parameters
        items : list data
    """
    return [float(i) for i in items]

def pastTime(interval, unit):
    """
    current and past time
    Parameters
        interval : time interval
        unit: time unit
    """
    curTime = int(time.time())
    if unit == "d":
        pastTime = curTime - interval * secInDay
    elif unit == "h":
        pastTime = curTime - interval * secInHour
    elif unit == "m":
        pastTime = curTime - interval * secInMinute
    else:
        raise ValueError("invalid time unit " + unit)
    return (curTime, pastTime)

def minuteAlign(ts):
    """
    minute aligned time	
    Parameters
        ts : time stamp in sec
    """
    return int((ts / secInMinute)) * secInMinute

def multMinuteAlign(ts, min):
    """
    multi minute aligned time	
    Parameters
        ts : time stamp in sec
        min : minute value
    """
    intv = secInMinute * min
    return int((ts / intv)) * intv

def hourAlign(ts):
    """
    hour aligned time
    Parameters
        ts : time stamp in sec
    """
    return int((ts / secInHour)) * secInHour

def hourOfDayAlign(ts, hour):
    """
    hour of day aligned time
    Parameters
        ts : time stamp in sec
        hour : hour of day
    """
    day = int(ts / secInDay)
    return (24 * day + hour) * secInHour

def dayAlign(ts):
    """
    day aligned time
    Parameters
        ts : time stamp in sec
    """
    return int(ts / secInDay) * secInDay

def timeAlign(ts, unit):
    """
    boundary alignment of time
    Parameters
        ts : time stamp in sec
        unit : unit of time
    """
    alignedTs = 0
    if unit == "s":
        alignedTs = ts
    elif unit == "m":
        alignedTs = minuteAlign(ts)
    elif unit == "h":
        alignedTs = hourAlign(ts)
    elif unit == "d":
        alignedTs = dayAlign(ts)
    else:
        raise ValueError("invalid time unit")
    return alignedTs

def monthOfYear(ts):
    """
    month of year
    Parameters
        ts : time stamp in sec
    """
    rem = ts % secInYear
    dow = int(rem / secInMonth)
    return dow

def dayOfWeek(ts):
    """
    day of week
    Parameters
        ts : time stamp in sec
    """
    rem = ts % secInWeek
    dow = int(rem / secInDay)
    return dow

def hourOfDay(ts):
    """
    hour of day
    Parameters
        ts : time stamp in sec
    """
    rem = ts % secInDay
    hod = int(rem / secInHour)
    return hod

def processCmdLineArgs(expectedTypes, usage):
    """
    process command line args and returns args as typed values
    Parameters
        expectedTypes : expected data types of arguments
        usage : usage message string
    """
    args = []
    numComLineArgs = len(sys.argv)
    numExpected = len(expectedTypes)
    if (numComLineArgs - 1 == len(expectedTypes)):
        try:
            for i in range(0, numExpected):
                if (expectedTypes[i] == typeInt):
                    args.append(int(sys.argv[i+1]))
                elif (expectedTypes[i] == typeFloat):
                    args.append(float(sys.argv[i+1]))
                elif (expectedTypes[i] == typeString):
                    args.append(sys.argv[i+1])
        except ValueError:
            print ("expected number of command line arguments found but there is type mis match")
            sys.exit(1)
    else:
        print ("expected number of command line arguments not found")
        print (usage)
        sys.exit(1)
    return args

def mutateString(val, numMutate, ctype):
    """
    mutate string multiple times
    Parameters
        val : string value
        numMutate : num of mutations
        ctype : type of character to mutate with
    """
    mutations = set()
    count = 0
    while count < numMutate:
        j = randint(0, len(val)-1)
        if j not in mutations:
            if ctype == "alpha":
                ch = selectRandomFromList(alphaTokens)
            elif ctype == "num":
                ch = selectRandomFromList(numTokens)
            elif ctype == "any":
                ch = selectRandomFromList(tokens)
            val = val[:j] + ch + val[j+1:]
            mutations.add(j)
            count += 1
    return val

def mutateList(values, numMutate, vmin, vmax):
    """
    mutate list multiple times
    Parameters
        values : list value
        numMutate : num of mutations
        vmin : minimum of value range
        vmax : maximum of value range
    """
    mutations = set()
    count = 0
    while count < numMutate:
        j = randint(0, len(values)-1)
        if j not in mutations:
            values[j] = np.random.uniform(vmin, vmax)
            count += 1
    return values


def swap(values, first, second):
    """
    swap two elements
    Parameters
        values : list value
        first : first swap position
        second : second swap position
    """
    t = values[first]
    values[first] = values[second]
    values[second] = t

def swapBetweenLists(values1, values2):
    """
    swap two elements between 2 lists
    Parameters
        values1 : first list of values
        values2 : second list of values
    """
    p1 = randint(0, len(values1)-1)
    p2 = randint(0, len(values2)-1)
    tmp = values1[p1]
    values1[p1] = values2[p2]
    values2[p2] = tmp

def safeAppend(values, value):
    """
    append only if not None
    Parameters
        values : list value
        value : value to append
    """
    if value is not None:
        values.append(value)

def getAllIndex(ldata, fldata):
    """
    get ALL indexes of list elements
    Parameters
        ldata : list data to find index in
        fldata : list data for values for index look up
    """
    return list(map(lambda e : fldata.index(e), ldata))

def findIntersection(lOne, lTwo):
    """
    find intersection elements between 2 lists
    Parameters
        lOne : first list of data
        lTwo : second list of data
    """
    sOne = set(lOne)
    sTwo = set(lTwo)
    sInt = sOne.intersection(sTwo)
    return list(sInt)

def isIntvOverlapped(rOne, rTwo):
    """
    checks overlap between 2 intervals
    Parameters
        rOne : first interval boundaries
        rTwo : second interval boundaries
    """
    clear = rOne[1] <=  rTwo[0] or rOne[0] >=  rTwo[1] 
    return not clear

def isIntvLess(rOne, rTwo):
    """
    checks if first iterval is less than second
    Parameters
        rOne : first interval boundaries
        rTwo : second interval boundaries
    """
    less = rOne[1] <=  rTwo[0] 
    return less

def findRank(e, values):
    """
    find rank of value in a list
    Parameters
        e : value to compare with
        values : list data
    """
    count =  1
    for ve in values:
        if ve < e:
            count += 1
    return count

def findRanks(toBeRanked, values):
    """
    find ranks of values in one list in another list
    Parameters
        toBeRanked : list of values for which ranks are found
        values : list in which rank is found : 
    """
    return list(map(lambda e: findRank(e, values), toBeRanked))

def formatFloat(prec, value, label = None):
    """
    formats a float with optional label
    Parameters
        prec : precision
        value : data value
        label : label for data
    """
    st = (label + " ") if label else ""
    formatter = "{:." + str(prec) + "f}" 
    return st + formatter.format(value)

def formatAny(value, label = None):
    """
    formats any obkect with optional label
    Parameters
        value : data value
        label : label for data
    """
    st = (label + " ") if label else ""
    return st + str(value)

def printList(values):
    """
    pretty print list
    Parameters
        values : list of values
    """
    for v in values:
        print(v)

def printMap(values, klab, vlab, precision, offset=16):
    """
    pretty print hash map
    Parameters
        values : dictionary of values
        klab : label for key
        vlab : label for value
        precision : precision
        offset : left justify offset
    """
    print(klab.ljust(offset, " ") + vlab)
    for k in values.keys():
        v = values[k]
        ks = toStr(k, precision).ljust(offset, " ")
        vs = toStr(v, precision)
        print(ks +  vs)

def printPairList(values, lab1, lab2, precision, offset=16):
    """
    pretty print list of pairs
    Parameters
        values : dictionary of values
        lab1 : first label
        lab2 : second label
        precision : precision
        offset : left justify offset
    """
    print(lab1.ljust(offset, " ") + lab2)
    for (v1, v2) in values:
        sv1 = toStr(v1, precision).ljust(offset, " ")
        sv2 = toStr(v2, precision)
        print(sv1 + sv2)

def createMap(*values):
    """
    create disctionary with results
    Parameters
        values : sequence of key value pairs
    """
    result = dict()
    for i in range(0, len(values), 2):
        result[values[i]] = values[i+1]
    return result

def getColMinMax(table, col):
    """
    return min, max values of a column
    Parameters
        table : tabular data
        col : column index
    """
    vmin = None
    vmax = None
    for rec in table:
        value = rec[col]
        if vmin is None:
            vmin = value
            vmax = value
        else:
            if value < vmin:
                vmin = value
            elif value > vmax:
                vmax = value
    return (vmin, vmax, vmax - vmin)

def createLogger(name, logFilePath, logLevName):
    """
    creates logger
    Parameters
        name : logger name
        logFilePath : log file path
        logLevName : log level
    """
    logger = logging.getLogger(name)
    fHandler = logging.handlers.RotatingFileHandler(logFilePath, maxBytes=1048576, backupCount=4)
    logLev = logLevName.lower()
    if logLev == "debug":
        logLevel = logging.DEBUG
    elif logLev == "info":
        logLevel = logging.INFO
    elif logLev == "warning":
        logLevel = logging.WARNING
    elif logLev == "error":
        logLevel = logging.ERROR
    elif logLev == "critical":
        logLevel = logging.CRITICAL
    else:
        raise ValueError("invalid log level name " + logLevelName)
    fHandler.setLevel(logLevel)
    fFormat = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
    fHandler.setFormatter(fFormat)
    logger.addHandler(fHandler)
    logger.setLevel(logLevel)
    return logger

@contextmanager
def suppressStdout():
    """
    suppress stdout
    Parameters
    """
    with open(os.devnull, "w") as devnull:
        oldStdout = sys.stdout
        sys.stdout = devnull
        try:  
            yield
        finally:
            sys.stdout = oldStdout

def exitWithMsg(msg):
    """
    print message and exit
    Parameters
        msg : message
    """
    print(msg + " -- quitting")
    sys.exit(0)

def drawLine(data, yscale=None):
    """
    line plot
    Parameters
        data : list data
        yscale : y axis scale
    """
    plt.plot(data)
    if yscale:
        step = int(yscale / 10)
        step = int(step / 10) * 10
        plt.yticks(range(0, yscale, step))
    plt.show()

def drawPlot(x, y, xlabel, ylabel):
    """
    line plot
    Parameters
        x : x values
        y : y values
        xlabel : x axis label
        ylabel : y axis label
    """
    plt.plot(x,y)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.show()

def drawPairPlot(x, y1, y2, xlabel,ylabel, y1label, y2label):
    """
    line plot of 2 lines
    Parameters
        x : x values
        y1 : first y values
        y2 : second y values
        xlabel : x labbel
        ylabel : y label
        y1label : first plot label
        y2label : second plot label
    """
    plt.plot(x, y1, label = y1label)
    plt.plot(x, y2, label = y2label)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.legend()
    plt.show()

def drawHist(ldata, myTitle, myXlabel, myYlabel, nbins=10):
    """
    draw histogram
    Parameters
        ldata : list data
        myTitle : title
        myXlabel : x label
        myYlabel : y label 
        nbins : num of bins
    """
    plt.hist(ldata, bins=nbins, density=True)
    plt.title(myTitle)
    plt.xlabel(myXlabel)
    plt.ylabel(myYlabel)
    plt.show()

def saveObject(obj, filePath):
    """
    saves an object
    Parameters
        obj : object
        filePath : file path for saved object
    """
    with open(filePath, "wb") as outfile:
        pickle.dump(obj,outfile)

def restoreObject(filePath):
    """
    restores an object
    Parameters
        filePath : file path to restore object from
    """
    with open(filePath, "rb") as infile:
        obj = pickle.load(infile)
    return obj

def isNumeric(data):
    """
    true if all elements int or float
    Parameters
        data : numeric data list
    """
    if type(data) == list or type(data) == np.ndarray:
        col = pd.Series(data)
    else:
        col = data
    return col.dtype == np.int32 or col.dtype == np.int64 or col.dtype == np.float32 or col.dtype == np.float64

def isInteger(data):
    """
    true if all elements int 
    Parameters
        data : numeric data list
    """
    if type(data) == list or type(data) == np.ndarray:
        col = pd.Series(data)
    else:
        col = data
    return col.dtype == np.int32 or col.dtype == np.int64

def isFloat(data):
    """
    true if all elements  float
    Parameters
        data : numeric data list
    """
    if type(data) == list or type(data) == np.ndarray:
        col = pd.Series(data)
    else:
        col = data
    return col.dtype == np.float32 or col.dtype == np.float64

def isBinary(data):
    """
    true if all elements either 0 or 1
    Parameters
        data : binary data
    """
    re = next((d for d in data if not (type(d) == int and (d == 0 or d == 1))), None)
    return (re is None)

def isCategorical(data):
    """
    true if all elements int or string
    Parameters
        data : data value
    """
    re = next((d for d in data if not (type(d) == int or type(d) == str)), None)
    return (re is None)

def assertEqual(value, veq, msg):
    """
    assert equal to
    Parameters
        value : value
        veq : value to be equated with
        msg : error msg
    """
    assert value == veq , msg

def assertGreater(value, vmin, msg):
    """
    assert greater than 
    Parameters
        value : value
        vmin : minimum value
        msg : error msg
    """
    assert value > vmin , msg

def assertGreaterEqual(value, vmin, msg):
    """
    assert greater than 
    Parameters
        value : value
        vmin : minimum value
        msg : error msg
    """
    assert value >= vmin , msg

def assertLesser(value, vmax, msg):
    """
    assert less than
    Parameters
        value : value
        vmax : maximum value
        msg : error msg
    """
    assert value < vmax , msg

def assertLesserEqual(value, vmax, msg):
    """
    assert less than
    Parameters
        value : value
        vmax : maximum value
        msg : error msg
    """
    assert value <= vmax , msg

def assertWithinRange(value, vmin, vmax, msg):
    """
    assert within range
    Parameters
        value : value
        vmin : minimum value
        vmax : maximum value
        msg : error msg
    """
    assert value >= vmin and value <= vmax, msg

def assertInList(value, values, msg):
    """
    assert contains in a list
    Parameters
        value ; balue to check for inclusion
        values : list data
        msg : error msg
    """
    assert value in values, msg

def maxListDist(l1, l2):
    """
    maximum list element difference between 2 lists
    Parameters
        l1 : first list data
        l2 : second list data
    """
    dist = max(list(map(lambda v : abs(v[0] - v[1]), zip(l1, l2))))	
    return dist

def fileLineCount(fPath):
    """ 
    number of lines ina file 
    Parameters
        fPath : file path
    """
    with open(fPath) as f:
        for i, li in enumerate(f):
            pass
    return (i + 1)

def getAlphaNumCharCount(sdata):
    """ 
    number of alphabetic and numeric charcters in a string 
    Parameters
        sdata : string data
    """
    acount = 0
    ncount = 0
    scount = 0
    ocount = 0
    assertEqual(type(sdata), str, "input must be string")
    for c in sdata:
        if c.isnumeric():
            ncount += 1
        elif c.isalpha():
            acount += 1
        elif c.isspace():
            scount += 1
        else:
            ocount += 1
    r = (acount, ncount, ocount)
    return r

class StepFunction:
    """
    step function
    Parameters
    """
    def __init__(self,  *values):
        """
        initilizer

        Parameters
            values : list of tuples, wich each tuple containing 2 x values and corresponding y value
        """
        self.points = values

    def find(self, x):
        """
        finds step function value

        Parameters
            x : x value
        """
        found = False
        y = 0
        for p in self.points:
            if (x >= p[0] and x < p[1]):
                y = p[2]
                found = True
                break

        if not found:
            l = len(self.points)
            if (x < self.points[0][0]):
                y = self.points[0][2]
            elif (x > self.points[l-1][1]):
                y = self.points[l-1][2]
        return y


class DummyVarGenerator:
    """
    dummy variable generator for categorical variable
    """
    def __init__(self,  rowSize, catValues, trueVal, falseVal, delim=None):
        """
        initilizer

        Parameters
            rowSize : row size
            catValues : dictionary with field index as key and list of categorical values as value
            trueVal : true value, typically "1"
            falseval : false value , typically "0"
            delim : field delemeter
        """
        self.rowSize = rowSize
        self.catValues = catValues
        numCatVar = len(catValues)
        colCount = 0
        for v in self.catValues.values():
            colCount += len(v)
        self.newRowSize = rowSize - numCatVar + colCount
        #print ("new row size {}".format(self.newRowSize))
        self.trueVal = trueVal
        self.falseVal = falseVal
        self.delim = delim

    def processRow(self, row):
        """
        encodes categorical variables, returning as delemeter separate dstring or list

        Parameters
            row : row either delemeter separated string or list
        """
        if self.delim is not None:
            rowArr = row.split(self.delim)
            msg = "row does not have expected number of columns found " + str(len(rowArr)) + " expected " + str(self.rowSize)
            assert len(rowArr) == self.rowSize, msg
        else:
            rowArr = row

        newRowArr = []
        for i in range(len(rowArr)):
            curVal = rowArr[i]
            if (i in self.catValues):
                values = self.catValues[i]
                for val in values:
                    if val == curVal:
                        newVal = self.trueVal
                    else:
                        newVal = self.falseVal
                    newRowArr.append(newVal)
            else:
                newRowArr.append(curVal)
        assert len(newRowArr) == self.newRowSize, "invalid new row size " + str(len(newRowArr)) + " expected " + str(self.newRowSize)
        encRow = self.delim.join(newRowArr) if self.delim is not None else newRowArr
        return encRow