File size: 11,758 Bytes
2fc2c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#!/Users/pranab/Tools/anaconda/bin/python

# avenir-python: Machine Learning
# Author: Pranab Ghosh
# 
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0 
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

# Package imports
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import sklearn as sk
import sklearn.linear_model
import matplotlib
import random
import jprops
from sklearn.externals import joblib
from sklearn.ensemble import BaggingClassifier
from random import randint

if len(sys.argv) < 2:
	print "usage: ./svm.py <config_properties_file>"
	sys.exit()

#train by bagging
def train_bagging():
	model = build_model()
	bagging_model = BaggingClassifier(base_estimator=model,n_estimators=bagging_num_estimator,
	max_samples=bagging_sample_fraction,oob_score=bagging_use_oob)
	
	#train model
	bagging_model.fit(XC, yc) 
	
	#persist model
	if persist_model:
		models = bagging_model.estimators_
		for m in zip(range(0, len(models)), models):
			model_file = model_file_directory + "/" + model_file_prefix + "_" + str(m[0] + 1) + ".mod"
			joblib.dump(m[1], model_file) 

	score = bagging_model.score(XC, yc)
	print "average error %.3f" %(1.0 - score)

#linear k fold validation
def train_kfold_validation(nfold):
	if native_kfold_validation:
		print "native linear kfold validation"
		model = build_model()
		scores = sk.cross_validation.cross_val_score(model, XC, yc, cv=nfold)
		av_score = np.mean(scores)
		print "average error %.3f" %(1.0 - av_score)
	else:
		print "extended linear kfold validation"
		train_kfold_validation_ext(nfold)

#linear k fold validation
def train_kfold_validation_ext(nfold):
	model = build_model()
	#scores = sk.cross_validation.cross_val_score(model, XC, yc, cv=nfold)
	#print scores
	
	offset = 0
	length = dsize / nfold
	errors = []
	fp_errors = []
	fn_errors = []
	for i in range(0, nfold):
		print "....Next fold %d" %(i)
		
		#split data
		(XV,yv,X,y) = split_data(offset, length)
		dvsize = len(XV)

		#train model
		model.fit(X, y) 

		#persist model
		if persist_model:
			model_file = model_file_directory + "/" + model_file_prefix + "_" + str(i + 1) + ".mod"
			joblib.dump(model, model_file) 
		
		#print support vectors
		print_support_vectors(model)
		
		#predict
		print "making predictions..."
		yp = model.predict(XV)

		#show prediction output
		(er, fp_er, fn_er) = validate(dvsize,yv,yp)
		errors.append(er)
		fp_errors.append(fp_er)
		fn_errors.append(fn_er)
		
		offset += length
		
	#average error
	av_error = np.mean(errors)
	av_fp_error = np.mean(fp_errors)
	av_fn_error = np.mean(fn_errors)
	print "average  error %.3f  false positive error %.3f  false negative error %.3f" %(av_error, av_fp_error, av_fn_error)

# random k fold validation
def train_rfold_validation(nfold, niter):
	if native_rfold_validation:
		print "native random  kfold validation"
		train_fraction = 1.0 / nfold
		scores = []
		for i in range(0,niter):
			state = randint(1,100)
			X, XV, y, yv = sk.cross_validation.train_test_split(XC, yc, test_size=train_fraction, random_state=state)
			model = build_model()
			model.fit(X,y)
			scores.append(model.score(XV, yv))
		
		print scores
		av_score = np.mean(scores)
		print "average error %.3f" %(1.0 - av_score)

	else:
		print "extended random  kfold validation"
		train_rfold_validation_ext(nfold, niter)
		
# random k fold validation
def train_rfold_validation_ext(nfold, niter):
	max_offset_frac = 1.0 - 1.0 / nfold
	max_offset_frac -= .01
	length = dsize / nfold

	errors = []
	fp_errors = []
	fn_errors = []
	for i in range(0,niter):	
		print "...Next iteration %d" %(i)
		offset = int(dsize * random.random() * max_offset_frac)
		print "offset: %d  length: %d" %(offset, length)
		(XV,yv,X,y) = split_data(offset, length)
		dvsize = len(XV)
	
		#build model
		model = build_model()
	
		#train model
		model.fit(X, y) 
		
		#persist model
		if persist_model:
			model_file = model_file_directory + "/" + model_file_prefix + "_" + str(i + 1) + ".mod"
			print "saving model file " +  model_file
			joblib.dump(model, model_file) 

		#print support vectors
		print_support_vectors(model)

		#predict
		print "making predictions..."
		yp = model.predict(XV)

		#show prediction output
		(er, fp_er, fn_er) = validate(dvsize,yv,yp)
		errors.append(er)
		fp_errors.append(fp_er)
		fn_errors.append(fn_er)
		
	av_error = np.mean(errors)
	av_fp_error = np.mean(fp_errors)
	av_fn_error = np.mean(fn_errors)
	print "average error %.3f  false positive error %.3f  false negative error %.3f" %(av_error, av_fp_error, av_fn_error)

# make predictions
def predict():
	psize = len(X)
	class_counts = []
	
	#all models
	for i in range(0, num_models):
		model_file = model_file_directory + "/" + model_file_prefix + "_" + str(i + 1) + ".mod"
		print "loading model file " +  model_file
		model = joblib.load(model_file) 	
		
		yp = model.predict(X)
		if i == 0:
			#initialize class counts
			for y in yp:
				class_count = {}
				if y == 0:
					class_count[0] = 1
					class_count[1] = 0
				else:	
					class_count[1] = 1
					class_count[0] = 0
				class_counts.append(class_count)
				
		else:
			#increment class count
			for j in range(0, psize):
				class_count = class_counts[j]
				y = yp[j]
				class_count[y] +=  1
	
	# predict based on majority vote
	print "here are the predictions"
	for k in range(0, psize):
		class_count = class_counts[k]
		if (class_count[0] > class_count[1]):
			y = 0
			majority = class_count[0]
		else:
			y = 1
			majority = class_count[1]
			
		print X[k]
		print "prediction %d  majority count %d" %(y, majority)
		
#builds model	
def build_model():	
	#build model
	print "building model..."
	if algo == "svc":
		if kernel_fun == "poly":
			model = sk.svm.SVC(C=penalty,kernel=kernel_fun,degree=poly_degree,gamma=kernel_coeff)
		elif kernel_fun == "rbf" or kernel_fun == "sigmoid":
			model = sk.svm.SVC(C=penalty,kernel=kernel_fun,gamma=kernel_coeff)
		else:
			model = sk.svm.SVC(C=penalty,kernel=kernel_fun)
	elif algo == "nusvc":
		if kernel_fun == "poly":
			model = sk.svm.NuSVC(kernel=kernel_fun,degree=poly_degree,gamma=kernel_coeff)
		elif kernel_fun == "rbf" or kernel_fun == "sigmoid":
			model = sk.svm.NuSVC(kernel=kernel_fun,gamma=kernel_coeff)
		else:
			model = sk.svm.NuSVC(kernel=kernel_fun)
	elif algo == "linearsvc":
		model = sk.svm.LinearSVC()
	else:
		print "invalid svm algorithm"
		sys.exit()
	return model

#splits data into training and validation sets	
def split_data(offset, length):
	print "splitting data..."
	#copy data
	XC_c = np.copy(XC)
	yc_c = list(yc)
	
	# validation set
	vlo = offset
	vup = vlo + length
	if (vup > len(yc)):
		vup = len(yc)
	XV = XC_c[vlo:vup:1]
	yv = yc_c[vlo:vup:1]
	dvsize = len(XV)
	print "data size %d validation data size %d" %(dsize, dvsize)
	#print "validation set"
	#print XV
	#print yv

	#training set
	X = np.delete(XC_c, np.s_[vlo:vup:1], 0)
	y = np.delete(yc_c, np.s_[vlo:vup:1], 0)
	#print "training set"
	#print X
	#print y
	return (XV,yv,X,y)

#print support vectors
def print_support_vectors(model):
	if (not algo == "linearsvc"):
		if print_sup_vectors:
			print "showing support vectors..." 
			print model.support_vectors_
		print "num of support vectors"
		print model.n_support_

#prints prediction output
def validate(dvsize,yv,yp):
	print "showing predictions..."
	err_count = 0
	tp = 0
	tn = 0
	fp = 0
	fn = 0
	for r in range(0,dvsize):
		#print "actual: %d  predicted: %d" %(yv[r], yp[r])
		if (not yv[r] ==  yp[r]):
			err_count += 1
			
		if (yp[r] == 1 and yv[r] == 1):
			tp += 1
		elif (yp[r] == 1 and yv[r] == 0):
			fp += 1
		elif (yp[r] == 0 and yv[r] == 0):
			tn += 1
		else:
			fn += 1
		
	er = float(err_count) / dvsize		
	fp_er = float(fp) / dvsize
	fn_er = float(fn) / dvsize
	print "error %.3f" %(er)
	print "true positive : %.3f" %(float(tp) / dvsize)
	print "false positive: %.3f" %(fp_er)
	print "true negative : %.3f" %(float(tn) / dvsize)
	print "false negative: %.3f" %(fn_er)

	return (er, fp_er, fn_er)

# load configuration
def getConfigs(configFile):
	configs = {}
	print "using following configurations"
	with open(configFile) as fp:
  		for key, value in jprops.iter_properties(fp):
			print key, value
			configs[key] = value

	return configs
	

# load configuration
configs = getConfigs(sys.argv[1])
mode = configs["common.mode"]

if mode == "train":
	#train
	print "running in train mode"
	data_file = configs["train.data.file"]
	feat_field_indices = configs["train.data.feature.fields"].split(",")
	feat_field_indices = [int(a) for a in feat_field_indices]
	class_field_index = int(configs["train.data.class.field"])
	preprocess = configs["common.preprocessing"]
	validation = configs["train.validation"]
	num_folds = int(configs["train.num.folds"])
	num_iter = int(configs["train.num.iter"])
	algo = configs["train.algorithm"]
	kernel_fun = configs["train.kernel.function"]
	poly_degree = int(configs["train.poly.degree"])
	penalty = float(configs["train.penalty"])
	if penalty < 0:
		penalty = 1.0
		print "using default for penalty"
	kernel_coeff = float(configs["train.gamma"])
	if kernel_coeff < 0:
		kernel_coeff = 'auto'
		print "using default for gamma"
	print_sup_vectors = configs["train.print.sup.vectors"].lower() == "true"
	persist_model = configs["train.persist.model"].lower() == "true"
	model_file_directory = configs["common.model.directory"]
	model_file_prefix = configs["common.model.file.prefix"]
	
	print feat_field_indices
	
	#extract feature fields
	d = np.loadtxt(data_file, delimiter=',')
	dsize = len(d)
	XC = d[:,feat_field_indices]

	#preprocess features
	if (preprocess == "scale"):
		XC = sk.preprocessing.scale(XC)
	elif (preprocess == "normalize"):
		XC = sk.preprocessing.normalize(XC, norm='l2')
	else:
		print "no preprocessing done"

	#extract output field
	yc = d[:,[class_field_index]]
	yc = yc.reshape(dsize)
	yc = [int(a) for a in yc]

	#print XC
	#print yc
	
	
	# train model
	if validation == "kfold":
		native_kfold_validation = configs["train.native.kfold.validation"].lower() == "true"
		train_kfold_validation(num_folds)
	elif validation == "rfold":
		native_rfold_validation = configs["train.native.rfold.validation"].lower() == "true"
		train_rfold_validation(num_folds,num_iter)
	elif validation == "bagging":
		bagging_num_estimator = int(configs["train.bagging.num.estimators"])
		bagging_sample_fraction = float(configs["train.bagging.sample.fraction"])
		bagging_use_oob = configs["train.bagging.sample.fraction"].lower() == "true"
		train_bagging()
	else:
		print "invalid training validation method"
		sys.exit()
		
else:
	#predict
	print "running in prediction mode"
	pred_data_file = configs["pred.data.file"]
	pred_feat_field_indices = configs["pred.data.feature.fields"].split(",")
	pred_feat_field_indices = [int(a) for a in pred_feat_field_indices]
	preprocess = configs["common.preprocessing"]
	num_models = int(configs["pred.num.models"])
	model_file_directory = configs["common.model.directory"]
	model_file_prefix = configs["common.model.file.prefix"]
	
	#extract feature fields
	pd = np.loadtxt(pred_data_file, delimiter=',')
	pdsize = len(pd)
	X = pd[:,pred_feat_field_indices]
	
	#preprocess features
	if (preprocess == "scale"):
		X = sk.preprocessing.scale(X)
	elif (preprocess == "normalize"):
		X = sk.preprocessing.normalize(X, norm='l2')
	else:
		print "no preprocessing done"
	
	predict()