File size: 36,141 Bytes
e03eaf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
#!/usr/local/bin/python3

# avenir-python: Machine Learning
# Author: Pranab Ghosh
# 
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0 
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
 
# Package imports
import os
import sys
import numpy as np
from sklearn import preprocessing
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.datasets import make_classification
import random
from math import *
from decimal import Decimal
import statistics
import jprops
from Levenshtein import distance as ld
from .util import *
from .sampler import *

class Configuration:
	"""
	Configuration management. Supports default value, mandatory value and typed value.
	"""
	def __init__(self, configFile, defValues, verbose=False):
		"""
		initializer
		
		Parameters
			configFile : config file path
			defValues : dictionary of default values
			verbose : verbosity flag
		"""
		configs = {}
		with open(configFile) as fp:
  			for key, value in jprops.iter_properties(fp):
  				configs[key] = value
		self.configs = configs
		self.defValues = defValues
		self.verbose = verbose

	def override(self, configFile):
		"""
		over ride configuration from file
		
		Parameters
			configFile : override config file path
		"""
		with open(configFile) as fp:
  			for key, value in jprops.iter_properties(fp):
  				self.configs[key] = value
  			
	
	def setParam(self, name, value):
		"""
		override individual configuration

		Parameters
			name : config param name
			value : config param value
		"""
		self.configs[name] = value

	
	def getStringConfig(self, name):
		"""
		get string param

		Parameters
			name : config param name
		"""
		if self.isNone(name):
			val = (None, False)
		elif self.isDefault(name):
			val = (self.handleDefault(name), True)
		else:
			val = (self.configs[name], False)
		if self.verbose:
			print( "{} {} {}".format(name, self.configs[name], val[0]))
		return val

	
	def getIntConfig(self, name):
		"""
		get int param

		Parameters
			name : config param name
		"""
		#print "%s %s" %(name,self.configs[name])
		if self.isNone(name):
			val = (None, False)
		elif self.isDefault(name):
			val = (self.handleDefault(name), True)
		else:
			val = (int(self.configs[name]), False)
		if self.verbose:
			print( "{} {} {}".format(name, self.configs[name], val[0]))
		return val
		
	
	def getFloatConfig(self, name):
		"""
		get float param

		Parameters
			name : config param name
		"""
		#print "%s %s" %(name,self.configs[name])
		if self.isNone(name):
			val = (None, False)
		elif self.isDefault(name):
			val = (self.handleDefault(name), True)
		else:
			val = (float(self.configs[name]), False)
		if self.verbose:
			print( "{} {} {:06.3f}".format(name, self.configs[name], val[0]))
		return val

	
	def getBooleanConfig(self, name):
		"""
		#get boolean param

		Parameters
			name : config param name
		"""
		if self.isNone(name):
			val = (None, False)
		elif self.isDefault(name):
			val = (self.handleDefault(name), True)
		else:
			bVal = self.configs[name].lower() == "true"
			val = (bVal, False)
		if self.verbose:
			print( "{} {} {}".format(name, self.configs[name], val[0]))
		return val
		
	
	def getIntListConfig(self, name, delim=","):
		"""
		get int list param

		Parameters
			name : config param name
			delim : delemeter
		"""
		if self.isNone(name):
			val = (None, False)
		elif self.isDefault(name):
			val = (self.handleDefault(name), True)
		else:
			delSepStr = self.getStringConfig(name)
		
			#specified as range
			intList = strListOrRangeToIntArray(delSepStr[0])
			val =(intList, delSepStr[1])
		return val
	
	def getFloatListConfig(self, name, delim=","):
		"""
		get float list param

		Parameters
			name : config param name
			delim : delemeter
		"""
		delSepStr = self.getStringConfig(name)
		if self.isNone(name):
			val = (None, False)
		elif self.isDefault(name):
			val = (self.handleDefault(name), True)
		else:
			flList = strToFloatArray(delSepStr[0], delim)
			val =(flList, delSepStr[1])
		return val

	
	def getStringListConfig(self, name, delim=","):
		"""
		get string list param

		Parameters
			name : config param name
			delim : delemeter
		"""
		delSepStr = self.getStringConfig(name)
		if self.isNone(name):
			val = (None, False)
		elif self.isDefault(name):
			val = (self.handleDefault(name), True)
		else:
			strList = delSepStr[0].split(delim)
			val = (strList, delSepStr[1])
		return val
	
	def handleDefault(self, name):
		"""
		handles default

		Parameters
			name : config param name
		"""
		dVal = self.defValues[name]
		if (dVal[1] is None):
			val = dVal[0]
		else:
			raise ValueError(dVal[1])
		return val
	
	
	def isNone(self, name):
		"""
		true is value is None	

		Parameters
			name : config param name
		"""
		return self.configs[name].lower() == "none"
	
	
	def isDefault(self, name):
		"""
		true if the value is default	

		Parameters
			name : config param name
		"""
		de = self.configs[name] == "_"
		#print de
		return de
	
	
	def eitherOrStringConfig(self, firstName, secondName):
		"""
		returns one of two string parameters	

		Parameters
			firstName : first parameter name
			secondName : second parameter name	
		"""
		if not self.isNone(firstName):
			first = self.getStringConfig(firstName)[0]
			second = None
			if not self.isNone(secondName):
				raise ValueError("only one of the two parameters should be set and not both " + firstName + "  " + secondName)
		else:
			if not self.isNone(secondName):
				second = self.getStringConfig(secondtName)[0]
				first = None
			else:
				raise ValueError("at least one of the two parameters should be set " + firstName + "  " + secondName)
		return (first, second)

	
	def eitherOrIntConfig(self, firstName, secondName):
		"""
		returns one of two int parameters	

		Parameters
			firstName : first parameter name
			secondName : second parameter name	
		"""
		if not self.isNone(firstName):
			first = self.getIntConfig(firstName)[0]
			second = None
			if not self.isNone(secondName):
				raise ValueError("only one of the two parameters should be set and not both " + firstName + "  " + secondName)
		else:
			if not self.isNone(secondName):
				second = self.getIntConfig(secondsName)[0]
				first = None
			else:
				raise ValueError("at least one of the two parameters should be set " + firstName + "  " + secondName)
		return (first, second)
	

class CatLabelGenerator:
	"""
	label generator for categorical variables
	"""
	def __init__(self,  catValues, delim):
		"""
		initilizers
		
		Parameters
			catValues : dictionary of categorical values
			delim : delemeter
		"""
		self.encoders = {}
		self.catValues = catValues
		self.delim = delim
		for k in self.catValues.keys():	
			le = preprocessing.LabelEncoder()	
			le.fit(self.catValues[k])
			self.encoders[k] = le

	def processRow(self, row):	
		"""
		encode row categorical values
		
		Parameters:
			row : data row
		"""
		#print row
		rowArr = row.split(self.delim)
		for i in range(len(rowArr)):
			if (i in self.catValues):
				curVal = rowArr[i]
				assert curVal in self.catValues[i], "categorival value invalid"
				encVal = self.encoders[i].transform([curVal])
				rowArr[i] = str(encVal[0])
		return self.delim.join(rowArr)		

	def getOrigLabels(self, indx):
		"""
		get original labels
		
		Parameters:
			indx : column index
		"""
		return self.encoders[indx].classes_	


class SupvLearningDataGenerator:
	"""
	data generator for supervised learning
	"""
	def __init__(self,  configFile):
		"""
		initilizers
		
		Parameters
			configFile : config file path
		"""
		defValues = dict()
		defValues["common.num.samp"] = (100, None)
		defValues["common.num.feat"] = (5, None)
		defValues["common.feat.trans"] = (None, None)
		defValues["common.feat.types"] = (None, "missing feature types")
		defValues["common.cat.feat.distr"] = (None, None)
		defValues["common.output.precision"] = (3, None)
		defValues["common.error"] = (0.01, None)
		defValues["class.gen.technique"] = ("blob", None)
		defValues["class.num.feat.informative"] = (2, None)
		defValues["class.num.feat.redundant"] = (2, None)
		defValues["class.num.feat.repeated"] = (0, None)
		defValues["class.num.feat.cat"] = (0, None)
		defValues["class.num.class"] = (2, None)

		self.config = Configuration(configFile, defValues)

	def genClassifierData(self):
		"""
		generates classifier data
		"""
		nsamp =  self.config.getIntConfig("common.num.samp")[0]
		nfeat =  self.config.getIntConfig("common.num.feat")[0]
		nclass =  self.config.getIntConfig("class.num.class")[0]
		#transform with shift and scale
		ftrans =  self.config.getFloatListConfig("common.feat.trans")[0]
		feTrans = dict()
		for i in range(0, len(ftrans), 2):
			tr = (ftrans[i], ftrans[i+1])
			indx = int(i/2)
			feTrans[indx] = tr

		ftypes =  self.config.getStringListConfig("common.feat.types")[0]

		# categorical feature distribution
		feCatDist = dict()
		fcatdl =  self.config.getStringListConfig("common.cat.feat.distr")[0]
		for fcatds in fcatdl:
			fcatd = fcatds.split(":")
			feInd =  int(fcatd[0])
			clVal =  int(fcatd[1])
			key = (feInd, clVal)		#feature index and class value
			dist = list(map(lambda i : (fcatd[i], float(fcatd[i+1])), range(2, len(fcatd), 2)))
			feCatDist[key] = CategoricalRejectSampler(*dist)

		#shift and scale
		genTechnique = self.config.getStringConfig("class.gen.technique")[0]
		error = self.config.getFloatConfig("common.error")[0]
		if genTechnique == "blob":
			features, claz = make_blobs(n_samples=nsamp, centers=nclass, n_features=nfeat)
			for i in range(nsamp):			#shift and scale
				for j in range(nfeat):
					tr = feTrans[j]
					features[i,j] = (features[i,j]  + tr[0]) * tr[1]
			claz = np.array(list(map(lambda c : random.randint(0, nclass-1) if random.random() < error else c, claz)))
		elif genTechnique == "classify":
			nfeatInfo =  self.config.getIntConfig("class.num.feat.informative")[0]
			nfeatRed =  self.config.getIntConfig("class.num.feat.redundant")[0]
			nfeatRep =  self.config.getIntConfig("class.num.feat.repeated")[0]
			shifts = list(map(lambda i : feTrans[i][0], range(nfeat)))
			scales = list(map(lambda i : feTrans[i][1], range(nfeat)))
			features, claz = make_classification(n_samples=nsamp, n_features=nfeat, n_informative=nfeatInfo, n_redundant=nfeatRed, 
			n_repeated=nfeatRep, n_classes=nclass, flip_y=error, shift=shifts, scale=scales)
		else:
			raise "invalid genaration technique"

		# add categorical features and format
		nCatFeat = self.config.getIntConfig("class.num.feat.cat")[0]
		prec =  self.config.getIntConfig("common.output.precision")[0]
		for f , c in zip(features, claz):
			nfs = list(map(lambda i : self.numFeToStr(i, f[i], c, ftypes[i], prec), range(nfeat)))
			if nCatFeat > 0:
				cfs = list(map(lambda i : self.catFe(i, c, ftypes[i], feCatDist), range(nfeat, nfeat + nCatFeat, 1)))
				rec = ",".join(nfs) + "," +  ",".join(cfs)  + "," + str(c)
			else:
				rec = ",".join(nfs)  + "," + str(c)
			yield rec

	def numFeToStr(self, fv, ft, prec):
		"""
		nummeric feature value to string
		
		Parameters
			fv : field value
			ft : field data type
			prec : precision
		"""
		if ft == "float":
			s = formatFloat(prec, fv)
		elif ft =="int":
			s = str(int(fv))
		else:		
			raise "invalid type expecting float or int"
		return s

	def catFe(self, i, cv, ft, feCatDist):
		"""
		generate categorical feature
		
		Parameters
			i : col index
			cv : class value
			ft : field data type
			feCatDist : cat value distribution
		"""
		if ft == "cat":
			key = (i, cv)
			s = feCatDist[key].sample()
		else:		
			raise "invalid type expecting categorical"
		return s

class RegressionDataGenerator:
	"""
	data generator for regression, including square terms, cross terms, bias, noise, correlated variables
	and user defined function
	"""
	def __init__(self,  configFile, callback=None):
		"""
		initilizers
		
		Parameters
			configFile : config file path
			callback : user defined function
		"""
		defValues = dict()
		defValues["common.pvar.samplers"] = (None, None)
		defValues["common.pvar.ranges"] = (None, None)
		defValues["common.linear.weights"] = (None, None)
		defValues["common.square.weights"] = (None, None)
		defValues["common.crterm.weights"] = (None, None)
		defValues["common.corr.params"] = (None, None)
		defValues["common.bias"] = (0, None)
		defValues["common.noise"] = (None, None)
		defValues["common.tvar.range"] = (None, None)
		defValues["common.weight.niter"] = (20, None)
		self.config = Configuration(configFile, defValues)
		self.callback = callback
		
		#samplers for predictor variables
		items = self.config.getStringListConfig("common.pvar.samplers")[0]
		self.samplers = list(map(lambda s : createSampler(s), items))
		self.npvar = len(self.samplers)
		
		#values range  for predictor variables
		items = self.config.getStringListConfig("common.pvar.ranges")[0]
		self.pvranges = list()
		for i in range(0, len(items), 2):
			if 	items[i] =="none":
				r = None
			else:
				vmin = float(items[i])
				vmax = float(items[i+1])
				r = (vmin, vmax, vmax-vmin)
			self.pvranges.append(r)
		assertEqual(len(self.pvranges), self.npvar, "no of predicatble var ranges provided is inavalid")
		
			
		#linear weights for predictor variables
		self.lweights = self.config.getFloatListConfig("common.linear.weights")[0]
		assertEqual(len(self.lweights), self.npvar, "no of linear weights provided is inavalid")
		
		
		#square weights for predictor variables
		items = self.config.getStringListConfig("common.square.weights")[0]
		self.sqweight = dict()
		for i in range(0, len(items), 2):
			vi = int(items[i])
			assertLesser(vi, self.npvar, "invalid predictor var index")
			wt = float(items[i+1])
			self.sqweight[vi] = wt
			
		#crossterm weights for predictor variables
		items = self.config.getStringListConfig("common.crterm.weights")[0]
		self.crweight = dict()
		for i in range(0, len(items), 3):
			vi = int(items[i])
			assertLesser(vi, self.npvar, "invalid predictor var index")
			vj = int(items[i+1])
			assertLesser(vj, self.npvar, "invalid predictor var index")
			wt = float(items[i+2])
			vp = (vi, vj)
			self.crweight[vp] = wt
		
		#correlated variables
		items = self.config.getStringListConfig("common.corr.params")[0]
		self.corrparams = dict()
		for co in items:
			cparam = co.split(":")
			vi = int(cparam[0])
			vj = int(cparam[1])
			k = (vi,vj)
			bias = float(cparam[2])
			wt = float(cparam[3])
			noise = float(cparam[4])
			roundoff = cparam[5] == "true"
			v = (bias, wt, noise, roundoff)
			self.corrparams[k] = v
		
		
		#boas, noise and target range values	
		self.bias = self.config.getFloatConfig("common.bias")[0]	
		noise = self.config.getStringListConfig("common.noise")[0]	
		self.ndistr = noise[0]
		self.noise = float(noise[1])
		self.tvarlim = self.config.getFloatListConfig("common.tvar.range")[0]
		
		#sample
		niter = self.config.getIntConfig("common.weight.niter")[0]
		yvals = list()
		for i in range(niter):
			y = self.sample()[1]
			yvals.append(y)
		
		#scale weights by sampled mean and target mean
		my = statistics.mean(yvals)	
		myt =(self.tvarlim[1] - self.tvarlim[0]) / 2
		sc = (myt - self.bias) / (my - self.bias)
		#print("weight scale {:.3f}".format(sc))
		self.lweights = list(map(lambda w : w * sc, self.lweights))
		#print("weights {}".format(toStrFromList(self.lweights, 3)))
		
		for k in self.sqweight.keys():
			self.sqweight[k] *= sc

		for k in self.crweight.keys():
			self.crweight[k] *= sc
			
			
	def sample(self):
		"""
		sample predictor variables and target variable
		
		"""
		pvd = list(map(lambda s : s.sample(), self.samplers))
		
		#correct for correlated variables
		for k in self.corrparams.keys():
			vi = k[0]
			vj = k[1]
			v = self.corrparams[k]
			bias = v[0]
			wt = v[1]
			noise = v[2]
			roundoff = v[3]	
			nv = bias + wt * pvd[vi] 
			pvd[vj] = preturbScalar(nv, noise, "normal")
			if roundoff:
				pvd[vj] = round(pvd[vj])
		
		spvd = list()
		lsum = self.bias
		for i in range(self.npvar):
			#range limit
			if  self.pvranges[i] is not None:
				pvd[i] = rangeLimit(pvd[i], self.pvranges[i][0], self.pvranges[i][1])
			spvd.append(pvd[i])
			
			#scale
			pvd[i] = scaleMinMaxScaData(pvd[i], self.pvranges[i])
			lsum += self.lweights[i] * pvd[i]
		
		#square terms	
		ssum = 0
		for k in self.sqweight.keys():
			ssum += self.sqweight[k] + pvd[k] * pvd[k]
		
		#cross terms		
		crsum = 0
		for k in self.crweight.keys():
			vi = k[0]
			vj = k[1]
			crsum += self.crweight[k] * pvd[vi] * pvd[vj]
			
		y = lsum + ssum + crsum
		y = preturbScalar(y, self.noise, self.ndistr)
		if self.callback is not None:
			ufy = self.callback(spvd)
			y += ufy
		r = (spvd, y)
		return r


def loadDataFile(file, delim, cols, colIndices):
	"""
	loads delim separated file and extracts columns

	Parameters
		file : file path
		delim : delemeter
		cols : columns to use from file
		colIndices ; columns to extract
	"""
	data = np.loadtxt(file, delimiter=delim, usecols=cols)
	extrData = data[:,colIndices]
	return (data, extrData)

def loadFeatDataFile(file, delim, cols):
	"""
	loads delim separated file and extracts columns
	
	Parameters
		file : file path
		delim : delemeter
		cols : columns to use from file
	"""
	data = np.loadtxt(file, delimiter=delim, usecols=cols)
	return data

def extrColumns(arr, columns):
	"""
	extracts columns
	
	Parameters
		arr : 2D array
		columns : columns
	"""
	return arr[:, columns]

def subSample(featData, clsData, subSampleRate, withReplacement):
	"""
	subsample feature and class label data	

	Parameters
		featData : 2D array of feature data
		clsData : arrray of class labels
		subSampleRate : fraction to be sampled
		withReplacement : true if sampling with replacement
	"""
	sampSize = int(featData.shape[0] * subSampleRate)
	sampledIndx = np.random.choice(featData.shape[0],sampSize, replace=withReplacement)
	sampFeat = featData[sampledIndx]
	sampCls = clsData[sampledIndx]
	return(sampFeat, sampCls)

def euclideanDistance(x,y):
	"""
	euclidean distance

	Parameters
		x : first vector
		y : second fvector
	"""
	return sqrt(sum(pow(a-b, 2) for a, b in zip(x, y)))

def squareRooted(x):
	"""
	square root of sum square

	Parameters
		x : data vector
	"""
	return round(sqrt(sum([a*a for a in x])),3)

def cosineSimilarity(x,y):
	"""
	cosine similarity
	
	Parameters
		x : first vector
		y : second fvector
	"""
	numerator = sum(a*b for a,b in zip(x,y))
	denominator = squareRooted(x) * squareRooted(y)
	return round(numerator / float(denominator), 3)

def cosineDistance(x,y):
	"""
	cosine distance

	Parameters
		x : first vector
		y : second fvector
	"""
	return 1.0 - cosineSimilarity(x,y)

def manhattanDistance(x,y):
	"""
	manhattan distance

	Parameters
		x : first vector
		y : second fvector
	"""
	return sum(abs(a-b) for a,b in zip(x,y))

def nthRoot(value, nRoot):
	"""
	nth root

	Parameters
		value : data value
		nRoot : root
	"""
	rootValue = 1/float(nRoot)
	return round (Decimal(value) ** Decimal(rootValue),3)

def minkowskiDistance(x,y,pValue):
	"""
	minkowski distance

	Parameters
		x : first vector
		y : second fvector
		pValue : power factor
	"""
	return nthRoot(sum(pow(abs(a-b),pValue) for a,b in zip(x, y)), pValue)

def jaccardSimilarityX(x,y):
	"""
	jaccard similarity

	Parameters
		x : first vector
		y : second fvector
	"""
	intersectionCardinality = len(set.intersection(*[set(x), set(y)]))
	unionCardinality = len(set.union(*[set(x), set(y)]))
	return intersectionCardinality/float(unionCardinality)

def jaccardSimilarity(x,y,wx=1.0,wy=1.0):
	"""
	jaccard similarity
	
	Parameters
		x : first vector
		y : second fvector
		wx : weight for x
		wy : weight for y
	"""
	sx = set(x)
	sy = set(y)
	sxyInt = sx.intersection(sy)
	intCardinality = len(sxyInt)
	sxIntDiff = sx.difference(sxyInt)
	syIntDiff = sy.difference(sxyInt)
	unionCardinality = len(sx.union(sy))
	return intCardinality/float(intCardinality + wx * len(sxIntDiff) + wy * len(syIntDiff))

def levenshteinSimilarity(s1, s2):
	"""
	Levenshtein similarity for strings
	
	Parameters
		sx : first string
		sy : second string
	"""
	assert type(s1) == str and type(s2) == str,  "Levenshtein similarity is for string only"
	d = ld(s1,s2)
	#print(d)
	l = max(len(s1),len(s2))
	d = 1.0 - min(d/l, 1.0)
	return d	

def norm(values, po=2):
	"""
	norm

	Parameters
		values : list of values
		po : power
	"""
	no = sum(list(map(lambda v: pow(v,po), values)))
	no = pow(no,1.0/po)
	return list(map(lambda v: v/no, values))
	
def createOneHotVec(size, indx = -1):
	"""
	random one hot vector
	
	Parameters
		size : vector size
		indx : one hot position
	"""
	vec = [0] * size
	s = random.randint(0, size - 1) if indx < 0 else indx
	vec[s] = 1
	return vec

def createAllOneHotVec(size):
	"""
	create all one hot vectors
	
	Parameters
		size : vector size and no of vectors
	"""
	vecs = list()
	for i in range(size):
		vec = [0] * size
		vec[i] = 1
		vecs.append(vec)
	return vecs

def blockShuffle(data, blockSize):
	"""
	block shuffle 	
	
	Parameters
		data : list data
		blockSize : block size
	"""
	numBlock = int(len(data) / blockSize)
	remain = len(data) % blockSize
	numBlock +=  (1 if remain > 0 else 0)
	shuffled = list()
	for i in range(numBlock):
		b = random.randint(0, numBlock-1)
		beg = b * blockSize
		if (b < numBlock-1):
			end = beg + blockSize
			shuffled.extend(data[beg:end])		
		else:
			shuffled.extend(data[beg:])
	return shuffled	

def shuffle(data, numShuffle):
	"""
	shuffle data by randonm swapping
	
	Parameters
		data : list data
		numShuffle : no of pairwise swaps
	"""
	sz = len(data)
	if numShuffle is None:
		numShuffle = int(sz / 2)
	for i in range(numShuffle):
		fi = random.randint(0, sz -1)
		se = random.randint(0, sz -1)
		tmp = data[fi]
		data[fi] = data[se]
		data[se] = tmp	

def randomWalk(size, start, lowStep, highStep):
	"""
	random walk	
	
	Parameters
		size : list data
		start : initial position
		lowStep : step min
		highStep : step max
	"""
	cur = start
	for i in range(size):
		yield cur
		cur += randomFloat(lowStep, highStep)

def binaryEcodeCategorical(values, value):
	"""
	one hot binary encoding	
	
	Parameters
		values : list of values
		value : value to be replaced with 1
	"""
	size = len(values)
	vec = [0] * size
	for i in range(size):
		if (values[i] == value):
			vec[i] = 1
	return vec		

def createLabeledSeq(inputData, tw):
	"""
	Creates feature, label pair from sequence data, where we have tw number of features followed by output
	
	Parameters
		values : list containing feature and label
		tw : no of features
	"""
	features = list()
	labels = list()
	l = len(inputDta)
	for i in range(l - tw):
		trainSeq = inputData[i:i+tw]
		trainLabel = inputData[i+tw]
		features.append(trainSeq)
		labels.append(trainLabel)
	return (features, labels)

def createLabeledSeq(filePath, delim, index, tw):
	"""
	Creates feature, label pair from 1D sequence data in file	
	
	Parameters
		filePath : file path
		delim : delemeter
		index : column index
		tw : no of features
	"""
	seqData = getFileColumnAsFloat(filePath, delim, index)
	return createLabeledSeq(seqData, tw)

def fromMultDimSeqToTabular(data, inpSize, seqLen):
	"""
	Input shape (nrow, inpSize * seqLen) output shape(nrow * seqLen, inpSize)
	
	Parameters
		data : 2D array
		inpSize : each input size in sequence
		seqLen : sequence length
	"""	
	nrow = data.shape[0]
	assert data.shape[1] == inpSize * seqLen, "invalid input size or sequence length"
	return data.reshape(nrow * seqLen, inpSize)
	
def fromTabularToMultDimSeq(data, inpSize, seqLen):
	"""
	Input shape (nrow * seqLen, inpSize)   output  shape (nrow, inpSize * seqLen) 

	Parameters
		data : 2D array
		inpSize : each input size in sequence
		seqLen : sequence length
	"""	
	nrow = int(data.shape[0] / seqLen)
	assert data.shape[1] == inpSize, "invalid input size"
	return data.reshape(nrow,  seqLen * inpSize)

def difference(data, interval=1):
	"""
	takes difference in time series data

	Parameters
		data :list data
		interval : interval for difference
	"""
	diff = list()
	for i in range(interval, len(data)):
		value = data[i] - data[i - interval]
		diff.append(value)
	return diff
	
def normalizeMatrix(data, norm, axis=1):
	"""
	normalized each row of the matrix
	
	Parameters
		data : 2D data
		nporm : normalization method
		axis : row or column
	"""
	normalized = preprocessing.normalize(data,norm=norm, axis=axis)
	return normalized
	
def standardizeMatrix(data, axis=0):
	"""
	standardizes each column of the matrix with mean and std deviation

	Parameters
		data : 2D data
		axis : row or column
	"""
	standardized = preprocessing.scale(data, axis=axis)
	return standardized

def asNumpyArray(data):
	"""
	converts to numpy array

	Parameters
		data  : array
	"""
	return np.array(data)

def perfMetric(metric, yActual, yPred, clabels=None):
	"""
	predictive model accuracy metric

	Parameters
		metric : accuracy metric
		yActual : actual values array
		yPred : predicted values array
		clabels : class labels
	"""
	if metric == "rsquare":
		score = metrics.r2_score(yActual, yPred)
	elif metric == "mae":
		score = metrics.mean_absolute_error(yActual, yPred)
	elif metric == "mse":
		score = metrics.mean_squared_error(yActual, yPred)
	elif metric == "acc":
		yPred = np.rint(yPred)
		score = metrics.accuracy_score(yActual, yPred)
	elif metric == "mlAcc":
		yPred = np.argmax(yPred, axis=1)
		score = metrics.accuracy_score(yActual, yPred)
	elif metric == "prec":
		yPred = np.argmax(yPred, axis=1)
		score = metrics.precision_score(yActual, yPred)
	elif metric == "rec":
		yPred = np.argmax(yPred, axis=1)
		score = metrics.recall_score(yActual, yPred)
	elif metric == "fone":
		yPred = np.argmax(yPred, axis=1)
		score = metrics.f1_score(yActual, yPred)
	elif metric == "confm":
		yPred = np.argmax(yPred, axis=1)
		score = metrics.confusion_matrix(yActual, yPred)
	elif metric == "clarep":
		yPred = np.argmax(yPred, axis=1)
		score = metrics.classification_report(yActual, yPred)
	elif metric == "bce":
		if clabels is None:
			clabels = [0, 1]
		score = metrics.log_loss(yActual, yPred, labels=clabels)
	elif metric == "ce":
		assert clabels is not None, "labels must be provided"
		score = metrics.log_loss(yActual, yPred, labels=clabels)
	else:
		exitWithMsg("invalid prediction performance metric " + metric)
	return score

def scaleData(data, method):
	"""
	scales feature data column wise

	Parameters
		data : 2D array
		method : scaling method
	"""
	if method == "minmax":
		scaler = preprocessing.MinMaxScaler()
		data = scaler.fit_transform(data)
	elif method == "zscale":
		data = preprocessing.scale(data)	
	else:
		raise ValueError("invalid scaling method")	
	return data

def scaleDataWithParams(data, method, scParams):
	"""
	scales feature data column wise

	Parameters
		data : 2D array
		method : scaling method
		scParams : scaling parameters
	"""
	if method == "minmax":
		data = scaleMinMaxTabData(data, scParams)
	elif method == "zscale":
		raise ValueError("invalid scaling method")	
	else:
		raise ValueError("invalid scaling method")	
	return data

def scaleMinMaxScaData(data, minMax):
	"""
	minmax scales scalar data

	Parameters
		data : scalar data
		minMax : min, max and range for each column
	"""
	sd = (data - minMax[0]) / minMax[2]
	return sd
	

def scaleMinMaxTabData(tdata, minMax):
	"""
	for tabular scales feature data column wise using min max values for each field

	Parameters
		tdata : 2D array
		minMax : min, max and range for each column
	"""
	stdata = list()
	for r in tdata:
		srdata = list()
		for i, c in enumerate(r):
			sd = (c - minMax[i][0]) / minMax[i][2]
			srdata.append(sd)
		stdata.append(srdata)
	return stdata
	
def scaleMinMax(rdata, minMax):
	"""
	scales feature data column wise using min max values for each field

	Parameters
		rdata : data array
		minMax : min, max and range for each column
	"""
	srdata = list()
	for i in range(len(rdata)):
		d = rdata[i]
		sd = (d - minMax[i][0]) / minMax[i][2]
		srdata.append(sd)
	return srdata
	
def harmonicNum(n):
	"""
	harmonic number

	Parameters
		n : number
	"""
	h = 0
	for i in range(1, n+1, 1):
		h += 1.0 / i
	return h
	
def digammaFun(n):
	"""
	figamma function

	Parameters
		n : number
	"""
	#Euler Mascheroni constant
	ec = 0.577216
	return harmonicNum(n - 1) - ec
			
def getDataPartitions(tdata, types, columns = None):
	"""
	partitions data with the given columns and random split point defined with predicates

	Parameters
		tdata : 2D array
		types : data typers
		columns : column indexes
	"""
	(dtypes, cvalues) = extractTypesFromString(types)
	if columns is None:
		ncol = len(data[0])
		columns = list(range(ncol))
	ncol = len(columns)
	#print(columns)
		
	# partition predicates
	partitions = None
	for c in columns:
		#print(c)
		dtype = dtypes[c]
		pred = list()
		if dtype == "int" or dtype == "float":
			(vmin, vmax) = getColMinMax(tdata, c)
			r = vmax - vmin
			rmin = vmin + .2 * r
			rmax = vmax - .2 * r
			sp = randomFloat(rmin, rmax)
			if dtype == "int":
				sp = int(sp)
			else:
				sp = "{:.3f}".format(sp)
				sp = float(sp)
			pred.append([c, "LT", sp])
			pred.append([c, "GE", sp])
		elif dtype == "cat":
			cv = cvalues[c]
			card = len(cv) 
			if card < 3:
				num = 1
			else:
				num = randomInt(1, card - 1)
			sp = selectRandomSubListFromList(cv, num)
			sp = " ".join(sp)
			pred.append([c, "IN", sp])
			pred.append([c, "NOTIN", sp])
		
		#print(pred)
		if partitions is None:
			partitions = pred.copy()
			#print("initial")
			#print(partitions)
		else:
			#print("extension")
			tparts = list()
			for p in partitions:
				#print(p)
				l1 = p.copy()
				l1.extend(pred[0])
				l2 = p.copy()
				l2.extend(pred[1])
				#print("after extension")
				#print(l1)
				#print(l2)
				tparts.append(l1)
				tparts.append(l2)
			partitions = tparts	
			#print("extending")
			#print(partitions)
	
	#for p in partitions:
		#print(p)	
	return partitions			
		
def genAlmostUniformDistr(size, nswap=50):
	"""
	generate probability distribution
	
	Parameters
		size : distr size
		nswap : no of mass swaps
	"""
	un = 1.0 / size
	distr = [un] * size
	distr = mutDistr(distr, 0.1 * un, nswap)
	return distr

def mutDistr(distr, shift, nswap=50):
	"""
	mutates a probability distribution
	
	Parameters
		distr distribution
		shift : amount of shift for swap
		nswap : no of mass swaps
	"""
	size = len(distr)
	for _ in range(nswap):
		fi = randomInt(0, size -1)
		si = randomInt(0, size -1)
		while fi == si:
			fi = randomInt(0, size -1)
			si = randomInt(0, size -1)
		
		shift = randomFloat(0, shift)
		t = distr[fi]
		distr[fi] -= shift
		if (distr[fi] < 0):
			distr[fi] = 0.0
			shift = t
		distr[si] += shift
	return distr

def generateBinDistribution(size, ntrue):
	"""
	generate binary array with some elements set to 1
	
	Parameters
		size : distr size
		ntrue : no of true values
	"""
	distr = [0] * size
	idxs = selectRandomSubListFromList(list(range(size)), ntrue)
	for i in idxs:
		distr[i] = 1
	return distr

def mutBinaryDistr(distr, nmut):
	"""
	mutate binary distribution
	
	Parameters
		distr : distr
		nmut : no of mutations
	"""
	idxs = selectRandomSubListFromList(list(range(len(distr))), nmut)
	for i in idxs:
		distr[i] = distr[i] ^ 1
	return distr
	
def fileSelFieldSubSeqModifierGen(filePath, column, offset, seqLen, modifier, precision, delim=","):
	"""
	file record generator that superimposes given data in the specified segment of a column

	Parameters
		filePath ; file path
		column : column index 
		offset : offset into column values
		seqLen : length of subseq
		modifier : data to be superimposed either list or a sampler object
		precision : floating point precision
		delim : delemeter
	"""
	beg = offset
	end = beg + seqLen
	isList = type(modifier) == list
	i = 0
	for rec in fileRecGen(filePath, delim):
		if i >= beg and i < end:
			va = float(rec[column])
			if isList:
				va += modifier[i - beg] 
			else:
				va += modifier.sample()
			rec[column] = formatFloat(precision, va)
		yield delim.join(rec)
		i += 1
	
class ShiftedDataGenerator:
	"""
	transforms data for distribution shift
	"""
	def __init__(self, types, tdata, addFact, multFact):
		"""
		initializer
		
		Parameters
			types data types
			tdata : 2D array
			addFact ; factor for data shift
			multFact ; factor for data scaling
		"""
		(self.dtypes, self.cvalues) = extractTypesFromString(types)
		
		self.limits = dict()
		for k,v in self.dtypes.items():
			if v == "int" or v == "false":
				(vmax, vmin) = getColMinMax(tdata, k)
				self.limits[k] = vmax - vmin
		self.addMin = - addFact / 2
		self.addMax =  addFact / 2
		self.multMin = 1.0 - multFact / 2
		self.multMax = 1.0 + multFact / 2
		
		
		
	
	def transform(self, tdata):
		"""
		linear transforms data to create  distribution shift with random shift and scale

		Parameters
			types : data types
		"""
		transforms = dict()
		for k,v in self.dtypes.items():
			if v == "int" or v == "false":				
				shift = randomFloat(self.addMin, self.addMax) * self.limits[k] 
				scale = randomFloat(self.multMin, self.multMax)
				trns = (shift, scale)
				transforms[k] = trns
			elif v == "cat":
				transforms[k] = isEventSampled(50)
				
		ttdata = list()
		for rec in tdata:
			nrec = rec.copy()
			for c in range(len(rec)):
				if c in self.dtypes:
					dtype = self.dtypes[c]
					if dtype == "int" or dtype == "float":
						(shift, scale) = transforms[c]
						nval = shift +  rec[c] * scale
						if dtype == "int":
							nrec[c] = int(nval)
						else:
							nrec[c] = nval
					elif dtype == "cat":
						cv = self.cvalues[c]
						if transforms[c]:
							nval = selectOtherRandomFromList(cv, rec[c])
							nrec[c] = nval
					
			ttdata.append(nrec)
			
		return ttdata
		
	def transformSpecified(self, tdata, sshift, scale):
		"""
		linear transforms data to create  distribution shift shift specified shift and scale

		Parameters
			types : data types
			sshift : shift factor
			scale : scale factor
		"""
		transforms = dict()
		for k,v in self.dtypes.items():
			if v == "int" or v == "false":				
				shift = sshift * self.limits[k] 
				trns = (shift, scale)
				transforms[k] = trns
			elif v == "cat":
				transforms[k] = isEventSampled(50)
				
		ttdata = self.__scaleShift(tdata, transforms)
		return ttdata
		
	def __scaleShift(self, tdata, transforms):
		"""
		shifts and scales tabular data
		
		Parameters
			tdata : 2D array
			transforms : transforms to apply
		"""
		ttdata = list()
		for rec in tdata:
			nrec = rec.copy()
			for c in range(len(rec)):
				if c in self.dtypes:
					dtype = self.dtypes[c]
					if dtype == "int" or dtype == "float":
						(shift, scale) = transforms[c]
						nval = shift + rec[c] * scale
						if dtype == "int":
							nrec[c] = int(nval)
						else:
							nrec[c] = nval
					elif dtype == "cat":
						cv = self.cvalues[c]
						if transforms[c]:
							#nval = selectOtherRandomFromList(cv, rec[c])
							#nrec[c] = nval
							pass
					
			ttdata.append(nrec)
		return ttdata
		
class RollingStat(object):
	"""
	stats for rolling windowt
	"""
	def __init__(self, wsize):
		"""
		initializer
		
		Parameters
			wsize : window size
		"""
		self.window = list()
		self.wsize = wsize
		self.mean = None
		self.sd = None

	def add(self, value):
		"""
		add a value
		
		Parameters
			value : value to add
		"""
		self.window.append(value)
		if len(self.window) > self.wsize:
			self.window = self.window[1:]
		
	def getStat(self):
		"""
		get rolling window mean and std deviation
		"""
		assertGreater(len(self.window), 0, "window is empty")
		if len(self.window) == 1:
			self.mean = self.window[0]
			self.sd = 0
		else:
			self.mean = statistics.mean(self.window)
			self.sd = statistics.stdev(self.window, xbar=self.mean)
		re = (self.mean, self.sd)
		return re
		
	def getSize(self):
		"""
		return window size
		"""
		return len(self.window)