File size: 94,406 Bytes
e03eaf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
#!/usr/local/bin/python3

# Author: Pranab Ghosh
# 
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0 
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
 
# Package imports
import os
import sys
import numpy as np
import pandas as pd
import sklearn as sk
from sklearn import preprocessing
from sklearn import metrics
import random
from math import *
from decimal import Decimal
import pprint
from statsmodels.graphics import tsaplots
from statsmodels.tsa import stattools as stt
from statsmodels.stats import stattools as sstt
from sklearn.linear_model import LinearRegression
from matplotlib import pyplot as plt
from scipy import stats as sta
from statsmodels.tsa.seasonal import seasonal_decompose
import statsmodels.api as sm
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
from sklearn.svm import OneClassSVM
from sklearn.covariance import EllipticEnvelope
from sklearn.mixture import GaussianMixture
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import hurst
from .util import *
from .mlutil import *
from .sampler import *
from .stats import *

"""
Load  data from a CSV file, data frame, numpy array or list
Each data set (array like) is given a name while loading
Perform various data exploration operation refering to the data sets by name
Save and restore workspace if needed
"""
class DataSetMetaData:
	"""
	data set meta data
	"""
	dtypeNum = 1
	dtypeCat = 2
	dtypeBin = 3
	def __init__(self, dtype):
		self.notes = list()
		self.dtype = dtype

	def addNote(self, note):
		"""
		add note
		"""
		self.notes.append(note)


class DataExplorer:
	"""
	various data exploration functions
	"""
	def __init__(self, verbose=True):
		"""
		initialize

		Parameters
			verbose : True for verbosity
		"""
		self.dataSets = dict()
		self.metaData = dict()
		self.pp = pprint.PrettyPrinter(indent=4)
		self.verbose = verbose

	def setVerbose(self, verbose):
		"""
		sets verbose

		Parameters
			verbose : True for verbosity
		"""
		self.verbose = verbose
		
	def save(self, filePath):
		"""
		save checkpoint
		
		Parameters
			filePath : path of file where saved
		"""
		self.__printBanner("saving workspace")
		ws = dict()
		ws["data"] = self.dataSets
		ws["metaData"] = self.metaData
		saveObject(ws, filePath)
		self.__printDone()

	def restore(self, filePath):
		"""
		restore checkpoint
		
		Parameters
			filePath : path of file from where to store
		"""
		self.__printBanner("restoring workspace")
		ws = restoreObject(filePath)
		self.dataSets = ws["data"]
		self.metaData = ws["metaData"]
		self.__printDone()


	def queryFileData(self, filePath,  *columns):
		"""
		query column data type  from a data file
		
		Parameters
			filePath : path of file with data
			columns : indexes followed by column names or column names
		"""
		self.__printBanner("querying column data type from a data frame")
		lcolumns = list(columns)
		noHeader = type(lcolumns[0]) ==  int
		if noHeader:			
			df = pd.read_csv(filePath,  header=None) 
		else:
			df = pd.read_csv(filePath,  header=0) 
		return self.queryDataFrameData(df,  *columns)

	def queryDataFrameData(self, df,  *columns):
		"""
		query column data type  from a data frame
		
		Parameters
			df : data frame with data
			columns : indexes followed by column name or column names
		"""
		self.__printBanner("querying column data type  from a data frame")
		columns = list(columns)
		noHeader = type(columns[0]) ==  int
		dtypes = list()
		if noHeader:			
			nCols = int(len(columns) / 2)
			colIndexes = columns[:nCols]
			cnames = columns[nCols:]
			nColsDf = len(df.columns)
			for i in range(nCols):
				ci = colIndexes[i]
				assert ci < nColsDf, "col index {} outside range".format(ci)
				col = df.loc[ : , ci]
				dtypes.append(self.getDataType(col))
		else:
			cnames = columns
			for c in columns:
				col = df[c]
				dtypes.append(self.getDataType(col))

		nt = list(zip(cnames, dtypes))
		result = self.__printResult("columns and data types", nt)
		return result

	def getDataType(self, col):
		"""
		get data type 
		
		Parameters
			col : contains data array like
		"""
		if isBinary(col):
			dtype = "binary"
		elif  isInteger(col):
			dtype = "integer"
		elif  isFloat(col):
			dtype = "float"
		elif  isCategorical(col):
			dtype = "categorical"
		else:
			dtype = "mixed"
		return dtype


	def addFileNumericData(self,filePath,  *columns):
		"""
		add numeric columns from a file
		
		Parameters
			filePath : path of file with data
			columns : indexes followed by column names or column names
		"""
		self.__printBanner("adding numeric columns from a file")
		self.addFileData(filePath, True, *columns)
		self.__printDone()


	def addFileBinaryData(self,filePath,  *columns):
		"""
		add binary columns from a file
		
		Parameters
			filePath : path of file with data
			columns : indexes followed by column names or column names
		"""
		self.__printBanner("adding binary columns from a file")
		self.addFileData(filePath, False, *columns)
		self.__printDone()

	def addFileData(self, filePath,  numeric, *columns):
		"""
		add columns from a file
		
		Parameters
			filePath : path of file with data
			numeric : True if numeric False in binary
			columns : indexes followed by column names or column names
		"""
		columns = list(columns)
		noHeader = type(columns[0]) ==  int
		if noHeader:			
			df = pd.read_csv(filePath,  header=None) 
		else:
			df = pd.read_csv(filePath,  header=0) 
		self.addDataFrameData(df, numeric, *columns)

	def addDataFrameNumericData(self,filePath,  *columns):
		"""
		add numeric columns from a data frame
		
		Parameters
			filePath : path of file with data
			columns : indexes followed by column names or column names
		"""
		self.__printBanner("adding numeric columns from a data frame")
		self.addDataFrameData(filePath, True, *columns)


	def addDataFrameBinaryData(self,filePath,  *columns):
		"""
		add binary columns from a data frame
		
		Parameters
			filePath : path of file with data
			columns : indexes followed by column names or column names
		"""
		self.__printBanner("adding binary columns from a data frame")
		self.addDataFrameData(filePath, False, *columns)


	def addDataFrameData(self, df,  numeric, *columns):
		"""
		add columns from a data frame
		
		Parameters
			df : data frame with data
			numeric : True if numeric False in binary
			columns : indexes followed by column names or column names
		"""
		columns = list(columns)
		noHeader = type(columns[0]) ==  int
		if noHeader:			
			nCols = int(len(columns) / 2)
			colIndexes = columns[:nCols]
			nColsDf = len(df.columns)
			for i in range(nCols):
				ci = colIndexes[i]
				assert ci < nColsDf, "col index {} outside range".format(ci)
				col = df.loc[ : , ci]
				if numeric:
					assert isNumeric(col), "data is not numeric"
				else:
					assert isBinary(col), "data is not binary"
				col = col.to_numpy()
				cn = columns[i + nCols]
				dtype = DataSetMetaData.dtypeNum if numeric else DataSetMetaData.dtypeBin
				self.__addDataSet(cn, col, dtype)
		else:
			for c in columns:
				col = df[c]
				if numeric:
					assert isNumeric(col), "data is not numeric"
				else:
					assert isBinary(col), "data is not binary"
				col = col.to_numpy()
				dtype = DataSetMetaData.dtypeNum if numeric else DataSetMetaData.dtypeBin
				self.__addDataSet(c, col, dtype)

	def __addDataSet(self, dsn, data, dtype):
		"""
		add dada set
		
		Parameters
			dsn: data set name
			data : numpy array data 
		"""
		self.dataSets[dsn] = data
		self.metaData[dsn] = DataSetMetaData(dtype)


	def addListNumericData(self, ds,  name):
		"""
		add numeric data from a list
		
		Parameters
			ds : list with data
			name : name of data set
		"""
		self.__printBanner("add numeric data from a list")
		self.addListData(ds, True,  name)
		self.__printDone()


	def addListBinaryData(self, ds, name):
		"""
		add binary data from a list
		
		Parameters
			ds : list with data
			name : name of data set
		"""
		self.__printBanner("adding binary data from a list")
		self.addListData(ds, False,  name)
		self.__printDone()

	def addListData(self, ds, numeric,  name):
		"""
		adds list data
		
		Parameters
			ds : list with data
			numeric : True if numeric False in binary
			name : name of data set
		"""
		assert type(ds) == list, "data not a list"
		if numeric:
			assert isNumeric(ds), "data is not numeric"
		else:
			assert isBinary(ds), "data is not binary"
		dtype = DataSetMetaData.dtypeNum if numeric else DataSetMetaData.dtypeBin
		self.dataSets[name] = np.array(ds)
		self.metaData[name] = DataSetMetaData(dtype)


	def addFileCatData(self, filePath,  *columns):
		"""
		add categorical columns from a file
		
		Parameters
			filePath : path of file with data
			columns : indexes followed by column names or column names
		"""
		self.__printBanner("adding categorical columns from a file")
		columns = list(columns)
		noHeader = type(columns[0]) ==  int
		if noHeader:			
			df = pd.read_csv(filePath,  header=None) 
		else:
			df = pd.read_csv(filePath,  header=0) 

		self.addDataFrameCatData(df,  *columns)
		self.__printDone()

	def addDataFrameCatData(self, df,  *columns):
		"""
		add categorical columns from a data frame
		
		Parameters
			df : data frame with data
			columns : indexes followed by column names or column names
		"""
		self.__printBanner("adding categorical columns from a data frame")
		columns = list(columns)
		noHeader = type(columns[0]) ==  int
		if noHeader:			
			nCols = int(len(columns) / 2)
			colIndexes = columns[:nCols]
			nColsDf = len(df.columns)
			for i in range(nCols):
				ci = colIndexes[i]
				assert ci < nColsDf, "col index {} outside range".format(ci)
				col = df.loc[ : , ci]
				assert isCategorical(col), "data is not categorical"
				col = col.tolist()
				cn = columns[i + nCols]
				self.__addDataSet(cn, col, DataSetMetaData.dtypeCat)
		else:
			for c in columns:
				col = df[c].tolist()
				self.__addDataSet(c, col, DataSetMetaData.dtypeCat)

	def addListCatData(self, ds, name):
		"""
		add categorical list data
		
		Parameters
			ds : list with data
			name : name of data set
		"""
		self.__printBanner("adding categorical list data")
		assert type(ds) == list, "data not a list"
		assert isCategorical(ds), "data is not categorical"
		self.__addDataSet(name, ds, DataSetMetaData.dtypeCat)
		self.__printDone()

	def remData(self, ds):
		"""
		removes data set
		
		Parameters
			ds : data set name
		"""
		self.__printBanner("removing data set", ds)
		assert ds in self.dataSets, "data set {} does not exist, please add it first".format(ds)
		self.dataSets.pop(ds)
		self.metaData.pop(ds)
		names = self.showNames()
		self.__printDone()	
		return names
	
	def addNote(self, ds, note):
		"""
		get data
		
		Parameters
			ds : data set name or list or numpy array with data
			note: note text
		"""
		self.__printBanner("adding note")
		assert ds in self.dataSets, "data set {} does not exist, please add it first".format(ds)
		mdata = self.metaData[ds]
		mdata.addNote(note)
		self.__printDone()

	def getNotes(self, ds):
		"""
		get data
		
		Parameters
			ds : data set name or list or numpy array with data
		"""
		self.__printBanner("getting notes")
		assert ds in self.dataSets, "data set {} does not exist, please add it first".format(ds)		
		mdata = self.metaData[ds]
		dnotes = mdata.notes
		if self.verbose:
			for dn in dnotes:
				print(dn)
		return dnotes

	def getNumericData(self, ds):
		"""
		get numeric data
		
		Parameters
			ds : data set name or list or numpy array with data
		"""
		if type(ds) == str:
			assert ds in self.dataSets, "data set {} does not exist, please add it first".format(ds)
			assert self.metaData[ds].dtype == DataSetMetaData.dtypeNum, "data set {} is expected to be numerical type for this operation".format(ds)
			data =   self.dataSets[ds]
		elif type(ds) == list:
			assert isNumeric(ds), "data is not numeric"
			data = np.array(ds)
		elif type(ds) == np.ndarray:
			data = ds
		else:
			raise "invalid type, expecting data set name, list or ndarray"			
		return data


	def getCatData(self, ds):
		"""
		get categorical data
		
		Parameters
			ds : data set name or list  with data
		"""
		if type(ds) == str:
			assert ds in self.dataSets, "data set {} does not exist, please add it first".format(ds)
			assert self.metaData[ds].dtype == DataSetMetaData.dtypeCat, "data set {} is expected to be categorical type for this operation".format(ds)
			data =   self.dataSets[ds]
		elif type(ds) == list:
			assert isCategorical(ds), "data is not categorical"
			data = ds
		else:
			raise "invalid type, expecting data set name or list"
		return data

	def getAnyData(self, ds):
		"""
		get any data
		
		Parameters
			ds : data set name or list  with data
		"""
		if type(ds) == str:
			assert ds in self.dataSets, "data set {} does not exist, please add it first".format(ds)
			data =   self.dataSets[ds]
		elif type(ds) == list:
			data = ds
		else:
			raise "invalid type, expecting data set name or list"
		return data

	def loadCatFloatDataFrame(self, ds1, ds2):
		"""
		loads float and cat data into data frame
		
		Parameters
			ds1: data set name or list
			ds2: data set name or list or numpy array
		"""
		data1 = self.getCatData(ds1)
		data2 = self.getNumericData(ds2)
		self.ensureSameSize([data1, data2])
		df1 = pd.DataFrame(data=data1)
		df2 = pd.DataFrame(data=data2)
		df = pd.concat([df1,df2], axis=1)
		df.columns = range(df.shape[1])
		return df

	def showNames(self):
		"""
		lists data set names
		"""
		self.__printBanner("listing data set names")
		names = self.dataSets.keys()
		if self.verbose:
			print("data sets")
			for ds in names:
				print(ds)
		self.__printDone()
		return names

	def plot(self, ds, yscale=None):
		"""
		plots data
		
		Parameters
			ds: data set name or list or numpy array
			yscale: y scale
		"""
		self.__printBanner("plotting data", ds)
		data = self.getNumericData(ds)
		drawLine(data, yscale)

	def plotZoomed(self, ds, beg, end, yscale=None):
		"""
		plots zoomed data
		
		Parameters
			ds: data set name or list or numpy array
			beg: begin offset
			end: end offset
			yscale: y scale
		"""
		self.__printBanner("plotting data", ds)
		data = self.getNumericData(ds)
		drawLine(data[beg:end], yscale)

	def scatterPlot(self, ds1, ds2):
		"""
		scatter plots data
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
		"""
		self.__printBanner("scatter plotting data", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		self.ensureSameSize([data1, data2])
		x = np.arange(1, len(data1)+1, 1)
		plt.scatter(x, data1 ,color="red")
		plt.scatter(x, data2 ,color="blue")
		plt.show()

	def print(self, ds):
		"""
		prunt data
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("printing data", ds)
		assert ds in self.dataSets, "data set {} does not exist, please add it first".format(ds)
		data =   self.dataSets[ds]
		if self.verbore:
			print(formatAny(len(data), "size"))
			print("showing first 50 elements" )
			print(data[:50])

	def plotHist(self, ds, cumulative, density, nbins=20):
		"""
		plots histogram
		
		Parameters
			ds: data set name or list or numpy array
			cumulative : True if cumulative
			density : True to normalize for probability density
			nbins : no of bins
		"""
		self.__printBanner("plotting histogram", ds)
		data = self.getNumericData(ds)
		plt.hist(data, bins=nbins, cumulative=cumulative, density=density)
		plt.show()

	def isMonotonicallyChanging(self, ds):
		"""
		checks if monotonically increasing or decreasing
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("checking  monotonic change", ds)
		data = self.getNumericData(ds)
		monoIncreasing = all(list(map(lambda i : data[i] >= data[i-1], range(1, len(data), 1))))
		monoDecreasing = all(list(map(lambda i : data[i] <= data[i-1], range(1, len(data), 1))))
		result = self.__printResult("monoIncreasing", monoIncreasing, "monoDecreasing", monoDecreasing)
		return result

	def getFreqDistr(self, ds,  nbins=20):
		"""
		get histogram
		
		Parameters
			ds: data set name or list or numpy array
			nbins: num of bins
		"""
		self.__printBanner("getting histogram", ds)
		data = self.getNumericData(ds)
		frequency, lowLimit, binsize, extraPoints = sta.relfreq(data, numbins=nbins)
		result = self.__printResult("frequency", frequency, "lowLimit", lowLimit, "binsize", binsize, "extraPoints", extraPoints)
		return result


	def getCumFreqDistr(self, ds,  nbins=20):
		"""
		get cumulative freq distribution
		
		Parameters
			ds: data set name or list or numpy array
			nbins: num of bins
		"""
		self.__printBanner("getting cumulative freq distribution", ds)
		data = self.getNumericData(ds)
		cumFrequency, lowLimit, binsize, extraPoints = sta.cumfreq(data, numbins=nbins)
		result = self.__printResult("cumFrequency", cumFrequency, "lowLimit", lowLimit, "binsize", binsize, "extraPoints", extraPoints)
		return result

	def getExtremeValue(self, ds,  ensamp, nsamp, polarity, doPlotDistr, nbins=20):
		"""
		get extreme values
		
		Parameters
			ds: data set name or list or numpy array
			ensamp: num of samples for extreme values
			nsamp: num of samples
			polarity: max or min
			doPlotDistr: plot distr
			nbins: num of bins
		"""
		self.__printBanner("getting extreme values", ds)
		data = self.getNumericData(ds)
		evalues = list()
		for _ in range(ensamp):
			values = selectRandomSubListFromListWithRepl(data, nsamp)
			if polarity == "max":
				evalues.append(max(values))
			else:
				evalues.append(min(values))
		if doPlotDistr:
			plt.hist(evalues, bins=nbins, cumulative=False, density=True)
			plt.show()
		result = self.__printResult("extremeValues", evalues)
		return result


	def getEntropy(self, ds,  nbins=20):
		"""
		get entropy
		
		Parameters
			ds: data set name or list or numpy array
			nbins: num of bins
		"""
		self.__printBanner("getting entropy", ds)
		data = self.getNumericData(ds)
		result = self.getFreqDistr(data, nbins)
		entropy = sta.entropy(result["frequency"])
		result = self.__printResult("entropy", entropy)
		return result

	def getRelEntropy(self, ds1,  ds2, nbins=20):
		"""
		get relative entropy or KL divergence with both data sets numeric
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			nbins: num of bins
		"""
		self.__printBanner("getting relative entropy or KL divergence", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		result1 = self .getFeqDistr(data1, nbins)
		freq1  = result1["frequency"]
		result2 = self .getFeqDistr(data2, nbins)
		freq2  = result2["frequency"]
		entropy = sta.entropy(freq1, freq2)
		result = self.__printResult("relEntropy", entropy)
		return result

	def getAnyEntropy(self, ds,  dt, nbins=20):
		"""
		get entropy of any data typr numeric or categorical
		
		Parameters
			ds: data set name or list or numpy array
			dt : data type num or cat
			nbins: num of bins
		"""
		entropy = self.getEntropy(ds, nbins)["entropy"] if dt == "num" else self.getStatsCat(ds)["entropy"]
		result = self.__printResult("entropy", entropy)
		return result

	def getJointEntropy(self, ds1, ds2, nbins=20):
		"""
		get joint entropy with both data sets numeric
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			nbins: num of bins
		"""
		self.__printBanner("getting join entropy", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		self.ensureSameSize([data1, data2])
		hist, xedges, yedges = np.histogram2d(data1, data2, bins=nbins)
		hist = hist.flatten()
		ssize = len(data1)
		hist = hist / ssize
		entropy = sta.entropy(hist)
		result = self.__printResult("jointEntropy", entropy)
		return result
		

	def getAllNumMutualInfo(self, ds1,  ds2, nbins=20):
		"""
		get mutual information for both numeric data
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			nbins: num of bins
		"""
		self.__printBanner("getting mutual information", ds1, ds2)
		en1 = self.getEntropy(ds1,nbins)
		en2 = self.getEntropy(ds2,nbins)
		en = self.getJointEntropy(ds1, ds2, nbins)

		mutInfo = en1["entropy"] + en2["entropy"] - en["jointEntropy"]
		result = self.__printResult("mutInfo", mutInfo)
		return result


	def getNumCatMutualInfo(self, nds, cds ,nbins=20):
		"""
		get mutiual information between numeric and categorical data
		
		Parameters
			nds: numeric data set name or list or numpy array
			cds: categoric data set name or list 
			nbins: num of bins
		"""
		self.__printBanner("getting mutual information of numerical and categorical data", nds, cds)
		ndata = self.getNumericData(nds)
		cds = self.getCatData(cds)
		nentr = self.getEntropy(nds)["entropy"]
		
		#conditional entropy
		cdistr = self.getStatsCat(cds)["distr"]
		grdata = self.getGroupByData(nds, cds, True)["groupedData"]
		cnentr = 0
		for gr, data in grdata.items():
			self.addListNumericData(data, "grdata")	
			gnentr = self.getEntropy("grdata")["entropy"]
			cnentr += gnentr * cdistr[gr]
			
		mutInfo = nentr - cnentr
		result = self.__printResult("mutInfo", mutInfo, "entropy", nentr, "condEntropy", cnentr)
		return result
		 
	def getTwoCatMutualInfo(self, cds1, cds2):
		"""
		get mutiual information between 2 categorical data sets
		
		Parameters
			cds1 : categoric data set name or list 
			cds2 : categoric data set name or list 
		"""
		self.__printBanner("getting mutual information of two categorical data sets", cds1, cds2)
		cdata1 = self.getCatData(cds1)
		cdata2 = self.getCatData(cds1)
		centr = self.getStatsCat(cds1)["entropy"]
		
		#conditional entropy
		cdistr = self.getStatsCat(cds2)["distr"]
		grdata = self.getGroupByData(cds1, cds2, True)["groupedData"]
		ccentr = 0
		for gr, data in grdata.items():
			self.addListCatData(data, "grdata")	
			gcentr = self.getStatsCat("grdata")["entropy"]
			ccentr += gcentr * cdistr[gr]
			
		mutInfo = centr - ccentr
		result = self.__printResult("mutInfo", mutInfo, "entropy", centr, "condEntropy", ccentr)
		return result

	def getMutualInfo(self, dst, nbins=20):
		"""
		get mutiual information between 2 data sets,any combination numerical and categorical
		
		Parameters
			dst : data source , data type, data source , data type
			nbins : num of bins
		"""
		assertEqual(len(dst), 4, "invalid data source and data type list size")
		dtypes = ["num", "cat"]
		assertInList(dst[1], dtypes, "invalid data type")
		assertInList(dst[3], dtypes, "invalid data type")
		self.__printBanner("getting mutual information of any mix numerical and categorical data", dst[0], dst[2])
		
		if dst[1] == "num":
			mutInfo = self.getAllNumMutualInfo(dst[0], dst[2], nbins)["mutInfo"] if dst[3] == "num" \
			else self.getNumCatMutualInfo(dst[0], dst[2], nbins)["mutInfo"]
		else:
			mutInfo = self.getNumCatMutualInfo(dst[2], dst[0], nbins)["mutInfo"] if dst[3] == "num" \
			else self.getTwoCatMutualInfo(dst[2], dst[0])["mutInfo"]
		
		result = self.__printResult("mutInfo", mutInfo)
		return result


	def getCondMutualInfo(self, dst, nbins=20):
		"""
		get conditional  mutiual information between 2 data sets,any combination numerical and categorical
		
		Parameters
			dst : data source , data type, data source , data type, data source , data type
			nbins : num of bins
		"""
		assertEqual(len(dst), 6, "invalid data source and data type list size")
		dtypes = ["num", "cat"]
		assertInList(dst[1], dtypes, "invalid data type")
		assertInList(dst[3], dtypes, "invalid data type")
		assertInList(dst[5], dtypes, "invalid data type")
		self.__printBanner("getting conditional mutual information of any mix numerical and categorical data", dst[0], dst[2])
		
		if dst[5] == "cat":
			cdistr = self.getStatsCat(dst[4])["distr"]
			grdata1 = self.getGroupByData(dst[0], dst[4], True)["groupedData"]
			grdata2 = self.getGroupByData(dst[2], dst[4], True)["groupedData"]
			
		else:
			gdata = self.getNumericData(dst[4])
			hist = Histogram.createWithNumBins(gdata, nbins)
			cdistr = hist.distr()
			grdata1 = self.getGroupByData(dst[0], dst[4], False)["groupedData"]
			grdata2 = self.getGroupByData(dst[2], dst[4], False)["groupedData"]


		cminfo = 0
		for gr in grdata1.keys():
			data1 = grdata1[gr]
			data2 = grdata2[gr]
			if dst[1] == "num":
				self.addListNumericData(data1, "grdata1")
			else:
				self.addListCatData(data1, "grdata1")
					
			if dst[3] == "num":
				self.addListNumericData(data2, "grdata2")
			else:
				self.addListCatData(data2, "grdata2")
			gdst = ["grdata1", dst[1], "grdata2", dst[3]]
			minfo = self.getMutualInfo(gdst, nbins)["mutInfo"] 
			cminfo += minfo * cdistr[gr]
		
		result = self.__printResult("condMutInfo", cminfo)
		return result
		
	def getPercentile(self, ds, value):
		"""
		gets percentile
		
		Parameters
			ds: data set name or list or numpy array
			value: the value
		"""
		self.__printBanner("getting percentile", ds)
		data = self.getNumericData(ds)
		percent = sta.percentileofscore(data, value)
		result = self.__printResult("value", value, "percentile", percent)
		return result

	def getValueRangePercentile(self, ds, value1, value2):
		"""
		gets percentile
		
		Parameters
			ds: data set name or list or numpy array
			value1: first value
			value2: second value
		"""
		self.__printBanner("getting percentile difference for value range", ds)
		if value1 < value2:
			v1 = value1
			v2 = value2
		else:
			v1 = value2
			v2 = value1
		data = self.getNumericData(ds)
		per1 = sta.percentileofscore(data, v1)
		per2 = sta.percentileofscore(data, v2)
		result = self.__printResult("valueFirst", value1, "valueSecond", value2, "percentileDiff", per2 - per1)
		return result

	def getValueAtPercentile(self, ds, percent):
		"""
		gets value at percentile
		
		Parameters
			ds: data set name or list or numpy array
			percent: percentile
		"""
		self.__printBanner("getting value at percentile", ds)
		data = self.getNumericData(ds)
		assert isInRange(percent, 0, 100), "percent should be between 0 and 100"
		value = sta.scoreatpercentile(data, percent)
		result = self.__printResult("value", value, "percentile", percent)
		return result

	def getLessThanValues(self, ds, cvalue):
		"""
		gets values less than given value
		
		Parameters
			ds: data set name or list or numpy array
			cvalue: condition value
		"""
		self.__printBanner("getting values less than", ds)
		fdata = self.__getCondValues(ds, cvalue, "lt")
		result = self.__printResult("count", len(fdata),  "lessThanvalues", fdata )
		return result


	def getGreaterThanValues(self, ds, cvalue):
		"""
		gets values greater than given value
		
		Parameters
			ds: data set name or list or numpy array
			cvalue: condition value
		"""
		self.__printBanner("getting values greater than", ds)
		fdata = self.__getCondValues(ds, cvalue, "gt")
		result = self.__printResult("count", len(fdata), "greaterThanvalues", fdata )
		return result

	def __getCondValues(self, ds, cvalue, cond):
		"""
		gets cinditional values
		
		Parameters
			ds: data set name or list or numpy array
			cvalue: condition value
			cond: condition
		"""
		data = self.getNumericData(ds)
		if cond == "lt":
			ind = np.where(data < cvalue)
		else:
			ind = np.where(data > cvalue)
		fdata = data[ind]
		return fdata

	def getUniqueValueCounts(self, ds, maxCnt=10):
		"""
		gets unique values and counts
		
		Parameters
			ds: data set name or list or numpy array
			maxCnt; max value count pairs to return
		"""
		self.__printBanner("getting unique values and counts", ds)
		data = self.getNumericData(ds)
		values, counts = sta.find_repeats(data)
		cardinality = len(values)
		vc = list(zip(values, counts))
		vc.sort(key = lambda v : v[1], reverse = True)
		result = self.__printResult("cardinality", cardinality,  "vunique alues and repeat counts", vc[:maxCnt])
		return result

	def getCatUniqueValueCounts(self, ds, maxCnt=10):
		"""
		gets unique categorical values and counts
		
		Parameters
			ds: data set name or list or numpy array
			maxCnt: max value count pairs to return
		"""
		self.__printBanner("getting unique categorical values and counts", ds)
		data = self.getCatData(ds)
		series = pd.Series(data)
		uvalues = series.value_counts()
		values = uvalues.index.tolist()
		counts = uvalues.tolist()
		vc = list(zip(values, counts))
		vc.sort(key = lambda v : v[1], reverse = True)
		result = self.__printResult("cardinality", len(values),  "unique values and repeat counts", vc[:maxCnt])
		return result

	def getCatAlphaValueCounts(self, ds):
		"""
		gets alphabetic value count
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting alphabetic value counts", ds)
		data = self.getCatData(ds)
		series = pd.Series(data)
		flags = series.str.isalpha().tolist()
		count = sum(flags)
		result = self.__printResult("alphabeticValueCount", count)
		return result
		

	def getCatNumValueCounts(self, ds):
		"""
		gets numeric value count
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting numeric value counts", ds)
		data = self.getCatData(ds)
		series = pd.Series(data)
		flags = series.str.isnumeric().tolist()
		count = sum(flags)
		result = self.__printResult("numericValueCount", count)
		return result


	def getCatAlphaNumValueCounts(self, ds):
		"""
		gets alpha numeric value count
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting alpha numeric value counts", ds)
		data = self.getCatData(ds)
		series = pd.Series(data)
		flags = series.str.isalnum().tolist()
		count = sum(flags)
		result = self.__printResult("alphaNumericValueCount", count)
		return result

	def getCatAllCharCounts(self, ds):
		"""
		gets alphabetic, numeric and special char count list
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting alphabetic, numeric and special  char counts", ds)
		data = self.getCatData(ds)
		counts = list()
		for d in data:
			r = getAlphaNumCharCount(d)
			counts.append(r)
		result = self.__printResult("allTypeCharCounts", counts)
		return result

	def getCatAlphaCharCounts(self, ds):
		"""
		gets alphabetic char count list
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting alphabetic char counts", ds)
		data = self.getCatData(ds)
		counts = self.getCatAllCharCounts(ds)["allTypeCharCounts"]
		counts = list(map(lambda r : r[0], counts))
		result = self.__printResult("alphaCharCounts", counts)
		return result
	
	def getCatNumCharCounts(self, ds):
		"""
		gets numeric char count list
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting numeric char counts", ds)
		data = self.getCatData(ds)
		counts = self.getCatAllCharCounts(ds)["allTypeCharCounts"]
		counts = list(map(lambda r : r[1], counts))
		result = self.__printResult("numCharCounts", counts)
		return result

	def getCatSpecialCharCounts(self, ds):
		"""
		gets special char count list
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting special char counts", ds)
		counts = self.getCatAllCharCounts(ds)["allTypeCharCounts"]
		counts = list(map(lambda r : r[2], counts))
		result = self.__printResult("specialCharCounts", counts)
		return result

	def getCatAlphaCharCountStats(self, ds):
		"""
		gets alphabetic char count stats
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting alphabetic char count stats", ds)
		counts = self.getCatAlphaCharCounts(ds)["alphaCharCounts"]
		nz = counts.count(0)
		st = self.__getBasicStats(np.array(counts))
		result = self.__printResult("mean", st[0], "std dev", st[1], "max", st[2], "min", st[3], "zeroCount", nz)
		return result
		
	def getCatNumCharCountStats(self, ds):
		"""
		gets numeric char count stats
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting numeric char count stats", ds)
		counts = self.getCatNumCharCounts(ds)["numCharCounts"]
		nz = counts.count(0)
		st = self.__getBasicStats(np.array(counts))
		result = self.__printResult("mean", st[0], "std dev", st[1], "max", st[2], "min", st[3], "zeroCount", nz)
		return result

	def getCatSpecialCharCountStats(self, ds):
		"""
		gets special char count stats
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting special char count stats", ds)
		counts = self.getCatSpecialCharCounts(ds)["specialCharCounts"]
		nz = counts.count(0)
		st = self.__getBasicStats(np.array(counts))
		result = self.__printResult("mean", st[0], "std dev", st[1], "max", st[2], "min", st[3], "zeroCount", nz)
		return result

	def getCatFldLenStats(self, ds):
		"""
		gets field length stats
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting field length stats", ds)
		data = self.getCatData(ds)
		le = list(map(lambda d: len(d), data))
		st = self.__getBasicStats(np.array(le))
		result = self.__printResult("mean", st[0], "std dev", st[1], "max", st[2], "min", st[3])
		return result

	def getCatCharCountStats(self, ds, ch):
		"""
		gets specified char ocuurence count stats
		
		Parameters
			ds: data set name or list or numpy array
			ch : character
		"""
		self.__printBanner("getting field length stats", ds)
		data = self.getCatData(ds)
		counts = list(map(lambda d: d.count(ch), data))
		nz = counts.count(0)
		st = self.__getBasicStats(np.array(counts))
		result = self.__printResult("mean", st[0], "std dev", st[1], "max", st[2], "min", st[3], "zeroCount", nz)
		return result

	def getStats(self, ds, nextreme=5):
		"""
		gets summary statistics
		
		Parameters
			ds: data set name or list or numpy array
			nextreme: num of extreme values
		"""
		self.__printBanner("getting summary statistics", ds)
		data = self.getNumericData(ds)
		stat = dict()
		stat["length"] = len(data)
		stat["min"] = data.min()
		stat["max"] = data.max()
		series = pd.Series(data)
		stat["n smallest"] = series.nsmallest(n=nextreme).tolist()
		stat["n largest"] = series.nlargest(n=nextreme).tolist()
		stat["mean"] = data.mean()
		stat["median"] = np.median(data)
		mode, modeCnt = sta.mode(data)
		stat["mode"] = mode[0]
		stat["mode count"] = modeCnt[0]
		stat["std"] = np.std(data)
		stat["skew"] = sta.skew(data)
		stat["kurtosis"] = sta.kurtosis(data)
		stat["mad"] = sta.median_absolute_deviation(data)
		self.pp.pprint(stat)
		return stat

	def getStatsCat(self, ds):
		"""
		gets summary statistics for categorical data
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting summary statistics for categorical data", ds)
		data = self.getCatData(ds)
		ch = CatHistogram()
		for d in data:
			ch.add(d)
		mode = ch.getMode()
		entr = ch.getEntropy()
		uvalues = ch.getUniqueValues()
		distr = ch.getDistr()
		result = self.__printResult("entropy", entr, "mode", mode, "uniqueValues", uvalues, "distr", distr)
		return result
		

	def getGroupByData(self, ds, gds, gdtypeCat, numBins=20):
		"""
		group by 

		Parameters
			ds: data set name or list or numpy array
			gds: group by data set name or list or numpy array
			gdtpe : group by data type
		"""
		self.__printBanner("getting group by data", ds)
		data = self.getAnyData(ds)
		if gdtypeCat:
			gdata = self.getCatData(gds)
		else:
			gdata = self.getNumericData(gds)
			hist = Histogram.createWithNumBins(gdata, numBins)
			gdata = list(map(lambda d : hist.bin(d), gdata))
			
		self.ensureSameSize([data, gdata])
		groups = dict()
		for g,d in zip(gdata, data):
			appendKeyedList(groups, g, d)
				
		ve = self.verbose 
		self.verbose = False
		result = self.__printResult("groupedData", groups)
		self.verbose = ve
		return result
		
	def getDifference(self, ds, order, doPlot=False):
		"""
		gets difference of given order
		
		Parameters
			ds: data set name or list or numpy array
			order: order of difference
			doPlot : True for plot
		"""
		self.__printBanner("getting difference of given order", ds)
		data = self.getNumericData(ds)
		diff = difference(data, order)
		if doPlot:
			drawLine(diff)
		return diff

	def getTrend(self, ds, doPlot=False):
		"""
		get trend
		
		Parameters
			ds: data set name or list or numpy array
			doPlot: true if plotting needed
		"""
		self.__printBanner("getting trend")
		data = self.getNumericData(ds)
		sz = len(data)
		X = list(range(0, sz))
		X = np.reshape(X, (sz, 1))
		model = LinearRegression()
		model.fit(X, data)
		trend = model.predict(X)
		sc = model.score(X, data)
		coef = model.coef_
		intc = model.intercept_
		result = self.__printResult("coeff", coef, "intercept", intc,  "r square error", sc,  "trend", trend)
		
		if doPlot:
			plt.plot(data)
			plt.plot(trend)
			plt.show()
		return result

	def getDiffSdNoisiness(self, ds):
		"""
		get noisiness based on std dev of first order difference
		
		Parameters
			ds: data set name or list or numpy array
		"""
		diff = self.getDifference(ds, 1)
		noise = np.std(np.array(diff))
		result = self.__printResult("noisiness", noise)
		return result
		
	def getMaRmseNoisiness(self, ds, wsize=5):
		"""
		gets noisiness based on RMSE with moving average
		
		Parameters
			ds: data set name or list or numpy array
			wsize : window size
		"""
		assert wsize % 2 == 1, "window size must be odd"
		data = self.getNumericData(ds)
		wind = data[:wsize]
		wstat = SlidingWindowStat.initialize(wind.tolist())
		
		whsize = int(wsize / 2)
		beg = whsize
		end = len(data) - whsize - 1
		sumSq = 0.0
		mean = wstat.getStat()[0]
		diff = data[beg] - mean
		sumSq += diff * diff
		for i in range(beg + 1, end, 1):
			mean = wstat.addGetStat(data[i + whsize])[0]
			diff = data[i] - mean
			sumSq += (diff * diff)
			
		noise = math.sqrt(sumSq / (len(data) - 2 * whsize))	
		result = self.__printResult("noisiness", noise)
		return result
		
		
	def deTrend(self, ds, trend, doPlot=False):
		"""
		de trend
		
		Parameters
			ds: data set name or list or numpy array
			ternd : trend data
			doPlot: true if plotting needed
		"""
		self.__printBanner("doing de trend", ds)
		data = self.getNumericData(ds)
		sz = len(data)
		detrended =  list(map(lambda i : data[i]-trend[i], range(sz)))
		if doPlot:
			drawLine(detrended)
		return detrended

	def getTimeSeriesComponents(self, ds, model, freq, summaryOnly, doPlot=False):
		"""
		extracts trend, cycle and residue components of time series
		
		Parameters
			ds: data set name or list or numpy array
			model : model type
			freq : seasnality period
			summaryOnly : True if only summary needed in output
			doPlot: true if plotting needed
		"""
		self.__printBanner("extracting trend, cycle and residue components of time series", ds)
		assert model == "additive" or model == "multiplicative", "model must be additive or multiplicative"
		data = self.getNumericData(ds)
		res = seasonal_decompose(data, model=model, period=freq)
		if doPlot:
			res.plot()
			plt.show()

		#summar of componenets
		trend = np.array(removeNan(res.trend))
		trendMean = trend.mean()
		trendSlope = (trend[-1] - trend[0]) / (len(trend) - 1)
		seasonal = np.array(removeNan(res.seasonal))
		seasonalAmp = (seasonal.max() - seasonal.min()) / 2
		resid = np.array(removeNan(res.resid))
		residueMean = resid.mean()
		residueStdDev = np.std(resid)

		if summaryOnly:
			result = self.__printResult("trendMean", trendMean, "trendSlope", trendSlope, "seasonalAmp", seasonalAmp,
			"residueMean", residueMean, "residueStdDev", residueStdDev)
		else:
			result = self.__printResult("trendMean", trendMean, "trendSlope", trendSlope, "seasonalAmp", seasonalAmp,
			"residueMean", residueMean, "residueStdDev", residueStdDev, "trend", res.trend, "seasonal", res.seasonal,
			"residual", res.resid)
		return result

	def getGausianMixture(self, ncomp, cvType, ninit, *dsl):
		"""
		finds gaussian mixture parameters
		
		Parameters
			ncomp : num of gaussian componenets
			cvType : co variance type
			ninit: num of intializations
			dsl: list of data set name or list or numpy array
		"""
		self.__printBanner("getting gaussian mixture parameters", *dsl)
		assertInList(cvType, ["full", "tied", "diag", "spherical"], "invalid covariance type")
		dmat = self.__stackData(*dsl)
		
		gm = GaussianMixture(n_components=ncomp,  covariance_type=cvType, n_init=ninit)
		gm.fit(dmat)
		weights = gm.weights_
		means = gm.means_
		covars = gm.covariances_
		converged = gm.converged_
		niter = gm.n_iter_
		aic = gm.aic(dmat)
		result = self.__printResult("weights", weights, "mean", means, "covariance", covars, "converged", converged, "num iterations", niter, "aic", aic)
		return result
		
	def getKmeansCluster(self, nclust, ninit, *dsl):
		"""
		gets cluster parameters
		
		Parameters
			nclust : num of clusters
			ninit: num of intializations
			dsl: list of data set name or list or numpy array
		"""
		self.__printBanner("getting kmean cluster parameters", *dsl)
		dmat = self.__stackData(*dsl)
		nsamp = dmat.shape[0]
		
		km = KMeans(n_clusters=nclust, n_init=ninit)
		km.fit(dmat)
		centers = km.cluster_centers_
		avdist = sqrt(km.inertia_ / nsamp)
		niter = km.n_iter_
		score = km.score(dmat)
		result = self.__printResult("centers", centers, "average distance", avdist, "num iterations", niter, "score", score)
		return result

	def getPrincComp(self, ncomp, *dsl):
		"""
		finds pricipal componenet parameters
		
		Parameters
			ncomp : num of pricipal componenets
			dsl: list of data set name or list or numpy array
		"""
		self.__printBanner("getting principal componenet parameters", *dsl)
		dmat = self.__stackData(*dsl)
		nfeat = dmat.shape[1]
		assertGreater(nfeat, 1, "requires multiple features")
		assertLesserEqual(ncomp, nfeat, "num of componenets greater than num of features")
		
		pca = PCA(n_components=ncomp)
		pca.fit(dmat)
		comps = pca.components_
		var = pca.explained_variance_
		varr = pca.explained_variance_ratio_
		svalues = pca.singular_values_
		result = self.__printResult("componenets", comps, "variance", var, "variance ratio", varr, "singular values", svalues)
		return result

	def getOutliersWithIsoForest(self, contamination,  *dsl):
		"""
		finds outliers using isolation forest
		
		Parameters
			contamination : proportion of outliers in the data set
			dsl: list of data set name or list or numpy array
		"""
		self.__printBanner("getting outliers using isolation forest", *dsl)
		assert contamination >= 0 and contamination <= 0.5, "contamination outside valid range"
		dmat = self.__stackData(*dsl)

		isf = IsolationForest(contamination=contamination, behaviour="new")
		ypred = isf.fit_predict(dmat)
		mask = ypred == -1
		doul = dmat[mask, :]
		mask = ypred != -1
		dwoul = dmat[mask, :]
		result = self.__printResult("numOutliers", doul.shape[0], "outliers", doul, "dataWithoutOutliers", dwoul)	
		return result

	def getOutliersWithLocalFactor(self, contamination,  *dsl):
		"""
		gets outliers using local outlier factor
		
		Parameters
			contamination : proportion of outliers in the data set
			dsl: list of data set name or list or numpy array
		"""
		self.__printBanner("getting outliers using local outlier factor", *dsl)
		assert contamination >= 0 and contamination <= 0.5, "contamination outside valid range"
		dmat = self.__stackData(*dsl)

		lof = LocalOutlierFactor(contamination=contamination)
		ypred = lof.fit_predict(dmat)
		mask = ypred == -1
		doul = dmat[mask, :]
		mask = ypred != -1
		dwoul = dmat[mask, :]
		result = self.__printResult("numOutliers", doul.shape[0], "outliers", doul, "dataWithoutOutliers", dwoul)	
		return result

	def getOutliersWithSupVecMach(self, nu,  *dsl):
		"""
		gets outliers using one class svm
		
		Parameters
			nu : upper bound on the fraction of training errors and a lower bound of the fraction of support vectors
			dsl: list of data set name or list or numpy array
		"""
		self.__printBanner("getting outliers using one class svm", *dsl)
		assert nu >= 0 and nu <= 0.5, "error upper bound outside valid range"
		dmat = self.__stackData(*dsl)

		svm = OneClassSVM(nu=nu)
		ypred = svm.fit_predict(dmat)
		mask = ypred == -1
		doul = dmat[mask, :]
		mask = ypred != -1
		dwoul = dmat[mask, :]
		result = self.__printResult("numOutliers", doul.shape[0], "outliers", doul, "dataWithoutOutliers", dwoul)	
		return result

	def getOutliersWithCovarDeterminant(self, contamination,  *dsl):
		"""
		gets outliers using covariance determinan
		
		Parameters
			contamination : proportion of outliers in the data set
			dsl: list of data set name or list or numpy array
		"""
		self.__printBanner("getting outliers using using covariance determinant", *dsl)
		assert contamination >= 0 and contamination <= 0.5, "contamination outside valid range"
		dmat = self.__stackData(*dsl)

		lof = EllipticEnvelope(contamination=contamination)
		ypred = lof.fit_predict(dmat)
		mask = ypred == -1
		doul = dmat[mask, :]
		mask = ypred != -1
		dwoul = dmat[mask, :]
		result = self.__printResult("numOutliers", doul.shape[0], "outliers", doul, "dataWithoutOutliers", dwoul)	
		return result

	def getOutliersWithZscore(self, ds, zthreshold, stats=None):
		"""
		gets outliers using zscore
		
		Parameters
			ds: data set name or list or numpy array
			zthreshold : z score threshold
			stats : tuple cintaining mean and std dev
		"""
		self.__printBanner("getting outliers using zscore", ds)
		data = self.getNumericData(ds)
		if stats is None:
			mean = data.mean()
			sd = np.std(data)
		else:
			mean = stats[0]
			sd = stats[1]
			
		zs = list(map(lambda d : abs((d - mean) / sd), data))
		outliers = list(filter(lambda r : r[1] > zthreshold, enumerate(zs)))
		result = self.__printResult("outliers", outliers)	
		return result

	def getOutliersWithRobustZscore(self, ds, zthreshold, stats=None):
		"""
		gets outliers using robust zscore
		
		Parameters
			ds: data set name or list or numpy array
			zthreshold : z score threshold
			stats : tuple containing median and median absolute deviation
		"""
		self.__printBanner("getting outliers using robust zscore", ds)
		data = self.getNumericData(ds)
		if stats is None:
			med = np.median(data)
			dev = np.array(list(map(lambda d : abs(d - med), data)))
			mad = 1.4296 *  np.median(dev)
		else:
			med = stats[0]
			mad = stats[1]
		
		rzs = list(map(lambda d : abs((d - med) / mad), data))
		outliers = list(filter(lambda r : r[1] > zthreshold, enumerate(rzs)))
		result = self.__printResult("outliers", outliers)	
		return result
		

	def getSubsequenceOutliersWithDissimilarity(self, subSeqSize, ds):
		"""
		gets subsequence outlier with subsequence pairwise disimilarity
		
		Parameters
			subSeqSize : sub sequence size
			ds: data set name or list or numpy array
		"""
		self.__printBanner("doing sub sequence anomaly detection with dissimilarity", ds)
		data = self.getNumericData(ds)
		sz = len(data)
		dist = dict()
		minDist = dict()
		for i in range(sz - subSeqSize):
			#first window
			w1 = data[i : i + subSeqSize]
			dmin = None
			for j in range(sz - subSeqSize):
				#second window not overlapping with the first
				if j + subSeqSize <=i or j >= i + subSeqSize:
					w2 = data[j : j + subSeqSize]
					k = (j,i)
					if k in dist:
						d = dist[k]
					else:
						d = euclideanDistance(w1,w2)
						k = (i,j)
						dist[k] = d
					if dmin is None:
						dmin = d
					else:
						dmin = d if d < dmin else dmin
			minDist[i] = dmin
		
		#find max of min
		dmax = None
		offset = None
		for k in minDist.keys():
			d = minDist[k]
			if dmax is None:
				dmax = d
				offset = k
			else:
				if d > dmax:
					dmax = d
					offset = k
		result = self.__printResult("subSeqOffset", offset, "outlierScore", dmax)	
		return result
	
	def getNullCount(self, ds):
		"""
		get count of null fields
		
		Parameters
			ds : data set name or list or numpy array with data
		"""
		self.__printBanner("getting null value count", ds)
		if type(ds) == str:
			assert ds in self.dataSets, "data set {} does not exist, please add it first".format(ds)
			data =  self.dataSets[ds]
			ser = pd.Series(data)
		elif type(ds) == list or type(ds) == np.ndarray:
			ser = pd.Series(ds)
			data = ds
		else:
			raise ValueError("invalid data type")
		nv = ser.isnull().tolist()
		nullCount = nv.count(True)
		nullFraction = nullCount / len(data)
		result = self.__printResult("nullFraction", nullFraction, "nullCount", nullCount)
		return result


	def fitLinearReg(self, dsx, ds, doPlot=False):
		"""
		fit  linear regression 
		
		Parameters
			dsx: x data set name or None
			ds: data set name or list or numpy array
			doPlot: true if plotting needed
		"""
		self.__printBanner("fitting linear regression", ds)
		data = self.getNumericData(ds)
		if dsx is None:
			x = np.arange(len(data))
		else:
			x = self.getNumericData(dsx)
		slope, intercept, rvalue, pvalue, stderr = sta.linregress(x, data)
		result = self.__printResult("slope", slope, "intercept", intercept, "rvalue", rvalue, "pvalue", pvalue, "stderr", stderr)
		if doPlot:
			self.regFitPlot(x, data, slope, intercept)
		return result

	def fitSiegelRobustLinearReg(self, ds, doPlot=False):
		"""
		siegel robust linear regression fit based on median
		
		Parameters
			ds: data set name or list or numpy array
			doPlot: true if plotting needed
		"""
		self.__printBanner("fitting siegel robust linear regression  based on median", ds)
		data = self.getNumericData(ds)
		slope , intercept = sta.siegelslopes(data)
		result = self.__printResult("slope", slope, "intercept", intercept)
		if doPlot:
			x = np.arange(len(data))
			self.regFitPlot(x, data, slope, intercept)
		return result

	def fitTheilSenRobustLinearReg(self, ds, doPlot=False):
		"""
		thiel sen  robust linear fit regression based on median
		
		Parameters
			ds: data set name or list or numpy array
			doPlot: true if plotting needed
		"""
		self.__printBanner("fitting thiel sen  robust linear regression based on median", ds)
		data = self.getNumericData(ds)
		slope, intercept, loSlope, upSlope = sta.theilslopes(data)
		result = self.__printResult("slope", slope, "intercept", intercept, "lower slope", loSlope, "upper slope", upSlope)
		if doPlot:
			x = np.arange(len(data))
			self.regFitPlot(x, data, slope, intercept)
		return result

	def plotRegFit(self, x, y, slope, intercept):
		"""
		plot linear rgeression fit line
		
		Parameters
			x : x values
			y : y values
			slope : slope
			intercept : intercept
		"""
		self.__printBanner("plotting linear rgeression fit line")
		fig = plt.figure()
		ax = fig.add_subplot(111)
		ax.plot(x, y, "b.")
		ax.plot(x, intercept + slope * x, "r-")
		plt.show()

	def getRegFit(self, xvalues, yvalues, slope, intercept):
		"""
		gets fitted line and residue
		
		Parameters
			x : x values
			y : y values
			slope : regression slope
			intercept : regressiob intercept
		"""
		yfit = list()
		residue = list()
		for x,y in zip(xvalues, yvalues):
			yf = x * slope + intercept
			yfit.append(yf)
			r = y - yf
			residue.append(r)
		result = self.__printResult("fitted line", yfit, "residue", residue)
		return result

	def getInfluentialPoints(self, dsx, dsy):
		"""
		gets influential points in regression model with Cook's distance
		
		Parameters
			dsx : data set name or list or numpy array for x
			dsy : data set name or list or numpy array for y
		"""
		self.__printBanner("finding influential points for linear regression", dsx, dsy)
		y = self.getNumericData(dsy)
		x = np.arange(len(data)) if dsx is None else self.getNumericData(dsx)
		model = sm.OLS(y, x).fit()
		np.set_printoptions(suppress=True)
		influence = model.get_influence()
		cooks = influence.cooks_distance
		result = self.__printResult("Cook distance", cooks)
		return result
	
	def getCovar(self, *dsl):
		"""
		gets covariance
		
		Parameters
			dsl: list of data set name or list or numpy array
		"""
		self.__printBanner("getting covariance", *dsl)
		data = list(map(lambda ds : self.getNumericData(ds), dsl))
		self.ensureSameSize(data)
		data = np.vstack(data)
		cv = np.cov(data)
		print(cv)
		return cv

	def getPearsonCorr(self, ds1, ds2, sigLev=.05):
		"""
		gets pearson correlation coefficient 
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
		"""
		self.__printBanner("getting pearson correlation coefficient ", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		self.ensureSameSize([data1, data2])
		stat, pvalue = sta.pearsonr(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably uncorrelated", "probably correlated", sigLev)
		return result


	def getSpearmanRankCorr(self, ds1, ds2, sigLev=.05):
		"""
		gets spearman correlation coefficient
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("getting spearman correlation coefficient",ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		self.ensureSameSize([data1, data2])
		stat, pvalue = sta.spearmanr(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably uncorrelated", "probably correlated", sigLev)
		return result

	def getKendalRankCorr(self, ds1, ds2, sigLev=.05):
		"""
		kendall’s tau, a correlation measure for ordinal data
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("getting kendall’s tau, a correlation measure for ordinal data", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		self.ensureSameSize([data1, data2])
		stat, pvalue = sta.kendalltau(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably uncorrelated", "probably correlated", sigLev)
		return result

	def getPointBiserialCorr(self, ds1, ds2, sigLev=.05):
		"""
		point biserial  correlation  between binary and numeric
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("getting point biserial correlation  between binary and numeric", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		assert isBinary(data1), "first data set is not binary"
		self.ensureSameSize([data1, data2])
		stat, pvalue = sta.pointbiserialr(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably uncorrelated", "probably correlated", sigLev)
		return result

	def getConTab(self, ds1, ds2):
		"""
		get contingency table for categorical data pair
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
		"""
		self.__printBanner("getting contingency table for categorical data", ds1, ds2)
		data1 = self.getCatData(ds1)
		data2 = self.getCatData(ds2)
		self.ensureSameSize([data1, data2])
		crosstab = pd.crosstab(pd.Series(data1), pd.Series(data2), margins = False)
		ctab = crosstab.values
		print("contingency table")
		print(ctab)
		return ctab

	def getChiSqCorr(self, ds1, ds2, sigLev=.05):
		"""
		chi square correlation for  categorical	data pair
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("getting chi square correlation for  two categorical", ds1, ds2)
		ctab = self.getConTab(ds1, ds2)
		stat, pvalue, dof, expctd = sta.chi2_contingency(ctab)
		result = self.__printResult("stat", stat, "pvalue", pvalue, "dof", dof, "expected", expctd)
		self.__printStat(stat, pvalue, "probably uncorrelated", "probably correlated", sigLev)
		return result

	def getSizeCorrectChiSqCorr(self, ds1, ds2, chisq):
		"""
		cramerV size corrected chi square correlation for  categorical	data pair
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			chisq: chisq stat
		"""
		self.__printBanner("getting size corrected chi square correlation for  two categorical", ds1, ds2)
		c1 = self.getCatUniqueValueCounts(ds1)["cardinality"]
		c2 = self.getCatUniqueValueCounts(ds2)["cardinality"]
		c = min(c1,c2)
		assertGreater(c, 1, "min cardinality should be greater than 1")
		l = len(self.getCatData(ds1))
		t = l * (c - 1)
		stat = math.sqrt(chisq / t)
		result = self.__printResult("stat", stat)
		return result

	def getAnovaCorr(self, ds1, ds2, grByCol, sigLev=.05):
		"""
		anova correlation for  numerical categorical	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			grByCol : group by column
			sigLev: statistical significance level
		"""
		self.__printBanner("anova correlation for numerical categorical", ds1, ds2)
		df = self.loadCatFloatDataFrame(ds1, ds2) if grByCol == 0 else self.loadCatFloatDataFrame(ds2, ds1)
		grByCol = 0
		dCol = 1
		grouped = df.groupby([grByCol])
		dlist =  list(map(lambda v : v[1].loc[:, dCol].values, grouped))
		stat, pvalue = sta.f_oneway(*dlist)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably uncorrelated", "probably correlated", sigLev)
		return result


	def plotAutoCorr(self, ds, lags, alpha, diffOrder=0):
		"""
		plots auto correlation
		
		Parameters
			ds: data set name or list or numpy array
			lags: num of lags
			alpha: confidence level
		"""
		self.__printBanner("plotting auto correlation", ds)
		data = self.getNumericData(ds)
		ddata = difference(data, diffOrder) if diffOrder > 0 else data
		tsaplots.plot_acf(ddata, lags = lags, alpha = alpha)
		plt.show()

	def getAutoCorr(self, ds, lags, alpha=.05):
		"""
		gets auts correlation
		
		Parameters
			ds: data set name or list or numpy array
			lags: num of lags
			alpha: confidence level
		"""
		self.__printBanner("getting auto correlation", ds)
		data = self.getNumericData(ds)
		autoCorr, confIntv  = stt.acf(data, nlags=lags, fft=False, alpha=alpha)
		result = self.__printResult("autoCorr", autoCorr, "confIntv", confIntv)
		return result


	def plotParAcf(self, ds, lags, alpha):
		"""
		partial auto correlation
		
		Parameters
			ds: data set name or list or numpy array
			lags: num of lags
			alpha: confidence level
		"""
		self.__printBanner("plotting partial auto correlation", ds)
		data = self.getNumericData(ds)
		tsaplots.plot_pacf(data, lags = lags, alpha = alpha)
		plt.show()

	def getParAutoCorr(self, ds, lags, alpha=.05):
		"""
		gets partial auts correlation
		
		Parameters
			ds: data set name or list or numpy array
			lags: num of lags
			alpha: confidence level
		"""
		self.__printBanner("getting partial auto correlation", ds)
		data = self.getNumericData(ds)
		partAutoCorr, confIntv  = stt.pacf(data, nlags=lags, alpha=alpha)
		result = self.__printResult("partAutoCorr", partAutoCorr, "confIntv", confIntv)
		return result

	def getHurstExp(self, ds, kind, doPlot=True):
		"""
		gets Hurst exponent of time series
		
		Parameters
			ds: data set name or list or numpy array
			kind: kind of data change, random_walk, price
			doPlot: True for plot
		"""
		self.__printBanner("getting Hurst exponent", ds)
		data = self.getNumericData(ds)
		h, c, odata = hurst.compute_Hc(data, kind=kind, simplified=False)
		if doPlot:
			f, ax = plt.subplots()
			ax.plot(odata[0], c * odata[0] ** h, color="deepskyblue")
			ax.scatter(odata[0], odata[1], color="purple")
			ax.set_xscale("log")
			ax.set_yscale("log")
			ax.set_xlabel("time interval")
			ax.set_ylabel("cum dev range and std dev ratio")
			ax.grid(True)
			plt.show()
			
		result = self.__printResult("hurstExponent", h, "hurstConstant", c)
		return result
		
	def approxEntropy(self, ds, m, r):
		"""
		gets apprx entroty of time series (ref: wikipedia)
		
		Parameters
			ds: data set name or list or numpy array
			m:  length of compared run of data
			r: filtering level
		"""
		self.__printBanner("getting approximate entropy", ds)
		ldata = self.getNumericData(ds)
		aent = abs(self.__phi(ldata, m + 1, r) - self.__phi(ldata, m, r))
		result = self.__printResult("approxEntropy", aent)
		return result
		
	def __phi(self, ldata, m, r):
		"""
		phi function for approximate entropy
		
		Parameters
			ldata: data array
			m:  length of compared run of data
			r: filtering level
		"""
		le = len(ldata)
		x = [[ldata[j] for j in range(i, i + m - 1 + 1)] for i in range(le - m + 1)]
		lex = len(x)
		c = list()
		for i in range(lex):
			cnt = 0
			for j in range(lex):
				cnt += (1 if maxListDist(x[i], x[j]) <= r else 0)
			cnt /= (le - m + 1.0)
			c.append(cnt)
		return sum(np.log(c)) / (le - m + 1.0)
		

	def oneSpaceEntropy(self, ds, scaMethod="zscale"):
		"""
		gets one space  entroty  (ref:  Estimating mutual information by Kraskov)
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting one space entropy", ds)
		data = self.getNumericData(ds)
		sdata = sorted(data)
		sdata = scaleData(sdata, scaMethod)
		su = 0
		n = len(sdata)
		for i in range(1, n, 1):
			t = abs(sdata[i] - sdata[i-1])
			if t > 0:
				su += log(t)
		su /= (n -1)
		#print(su)
		ose = digammaFun(n) - digammaFun(1) + su
		result = self.__printResult("entropy", ose)
		return result
		
	
	def plotCrossCorr(self, ds1, ds2, normed, lags):
		"""
		plots cross correlation 
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			normed: If True, input vectors are normalised to unit 
			lags: num of lags
		"""  
		self.__printBanner("plotting cross correlation between two numeric", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		self.ensureSameSize([data1, data2])
		plt.xcorr(data1, data2, normed=normed, maxlags=lags)
		plt.show()

	def getCrossCorr(self, ds1, ds2):
		"""
		gets cross correlation
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
		"""
		self.__printBanner("getting cross correlation", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		self.ensureSameSize([data1, data2])
		crossCorr = stt.ccf(data1, data2)
		result = self.__printResult("crossCorr", crossCorr)
		return result

	def getFourierTransform(self, ds):
		"""
		gets fast fourier transform
		
		Parameters
			ds: data set name or list or numpy array
		"""
		self.__printBanner("getting fourier transform", ds)
		data = self.getNumericData(ds)
		ft = np.fft.rfft(data)
		result = self.__printResult("fourierTransform", ft)
		return result


	def testStationaryAdf(self, ds, regression, autolag, sigLev=.05):
		"""
		Adf stationary test null hyp not stationary
		
		Parameters
			ds: data set name or list or numpy array
			regression: constant and trend order to include in regression
			autolag: method to use when automatically determining the lag
			sigLev: statistical significance level
		"""
		self.__printBanner("doing ADF stationary test", ds)
		relist = ["c","ct","ctt","nc"]
		assert regression in relist, "invalid regression value"
		alList = ["AIC", "BIC", "t-stat", None]
		assert autolag in alList, "invalid autolag value"

		data = self.getNumericData(ds)
		re = stt.adfuller(data, regression=regression, autolag=autolag)
		result = self.__printResult("stat", re[0], "pvalue", re[1] , "num lags", re[2] , "num observation for regression", re[3],
		"critial values", re[4])
		self.__printStat(re[0], re[1], "probably not stationary", "probably stationary", sigLev)
		return result

	def testStationaryKpss(self, ds, regression, nlags, sigLev=.05):
		"""
		Kpss stationary test null hyp  stationary
		
		Parameters
			ds: data set name or list or numpy array
			regression: constant and trend order to include in regression
			nlags : no of lags
			sigLev: statistical significance level
		"""
		self.__printBanner("doing KPSS stationary test", ds)
		relist = ["c","ct"]
		assert regression in relist, "invalid regression value"
		nlList =[None, "auto", "legacy"]
		assert nlags in nlList or type(nlags) == int, "invalid nlags value"


		data = self.getNumericData(ds)
		stat, pvalue, nLags, criticalValues = stt.kpss(data, regression=regression, lags=nlags)
		result = self.__printResult("stat", stat, "pvalue", pvalue, "num lags", nLags, "critial values", criticalValues)
		self.__printStat(stat, pvalue, "probably stationary", "probably not stationary", sigLev)
		return result

	def testNormalJarqBera(self, ds, sigLev=.05):
		"""
		jarque bera normalcy test
		
		Parameters
			ds: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing ajrque bera normalcy test", ds)
		data = self.getNumericData(ds)
		jb, jbpv, skew, kurtosis =  sstt.jarque_bera(data)
		result = self.__printResult("stat", jb, "pvalue", jbpv, "skew", skew, "kurtosis", kurtosis)
		self.__printStat(jb, jbpv, "probably gaussian", "probably not gaussian", sigLev)
		return result


	def testNormalShapWilk(self, ds, sigLev=.05):
		"""
		shapiro wilks normalcy test
		
		Parameters
			ds: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing shapiro wilks normalcy test", ds)
		data = self.getNumericData(ds)
		stat, pvalue = sta.shapiro(data)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably gaussian", "probably not gaussian", sigLev)
		return result

	def testNormalDagast(self, ds, sigLev=.05):
		"""
		D’Agostino’s K square  normalcy test

		Parameters
			ds: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing D’Agostino’s K square  normalcy test", ds)
		data = self.getNumericData(ds)
		stat, pvalue = sta.normaltest(data)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably gaussian", "probably not gaussian", sigLev)
		return result

	def testDistrAnderson(self, ds, dist, sigLev=.05):
		"""
		Anderson test for normal, expon, logistic, gumbel, gumbel_l, gumbel_r
		
		Parameters
			ds: data set name or list or numpy array
			dist: type of distribution
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Anderson test for for various distributions", ds)
		diList = ["norm", "expon", "logistic", "gumbel", "gumbel_l", "gumbel_r", "extreme1"]
		assert dist in diList, "invalid distribution"

		data = self.getNumericData(ds)
		re = sta.anderson(data)
		slAlpha = int(100 * sigLev)
		msg = "significnt value not found"
		for i in range(len(re.critical_values)):
			sl, cv = re.significance_level[i], re.critical_values[i]
			if int(sl) == slAlpha:
				if re.statistic < cv:
					msg = "probably {} at the {:.3f} siginificance level".format(dist, sl)
				else:
					msg = "probably not {} at the {:.3f} siginificance level".format(dist, sl)
		result = self.__printResult("stat", re.statistic, "test", msg)
		print(msg)
		return result

	def testSkew(self, ds, sigLev=.05):
		"""
		test skew wrt  normal distr
		
		Parameters
			ds: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("testing skew wrt normal distr", ds)
		data = self.getNumericData(ds)
		stat, pvalue = sta.skewtest(data)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same skew as normal distribution", "probably not same skew as normal distribution", sigLev)
		return result

	def testTwoSampleStudent(self, ds1, ds2, sigLev=.05):
		"""
		student t 2 sample test
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing student t 2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.ttest_ind(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same distribution", "probably not same distribution", sigLev)
		return result

	def testTwoSampleKs(self, ds1, ds2, sigLev=.05):
		"""
		Kolmogorov Sminov 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Kolmogorov Sminov 2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.ks_2samp(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same distribution", "probably not same distribution", sigLev)


	def testTwoSampleMw(self, ds1, ds2, sigLev=.05):
		"""
		Mann-Whitney  2 sample statistic
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Mann-Whitney  2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.mannwhitneyu(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same distribution", "probably not same distribution", sigLev)

	def testTwoSampleWilcox(self, ds1, ds2, sigLev=.05):
		"""
		Wilcoxon Signed-Rank 2 sample statistic
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Wilcoxon Signed-Rank 2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.wilcoxon(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same distribution", "probably not same distribution", sigLev)


	def testTwoSampleKw(self, ds1, ds2, sigLev=.05):
		"""
		Kruskal-Wallis 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Kruskal-Wallis 2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.kruskal(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same distribution", "probably snot ame distribution", sigLev)

	def testTwoSampleFriedman(self, ds1, ds2, ds3, sigLev=.05):
		"""
		Friedman 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Friedman 2 sample  test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		data3 = self.getNumericData(ds3)
		stat, pvalue = sta.friedmanchisquare(data1, data2, data3)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same distribution", "probably not same distribution", sigLev)

	def testTwoSampleEs(self, ds1, ds2, sigLev=.05):
		"""
		Epps Singleton 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Epps Singleton 2 sample  test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.epps_singleton_2samp(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same distribution", "probably not same distribution", sigLev)

	def testTwoSampleAnderson(self, ds1, ds2, sigLev=.05):
		"""
		Anderson 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Anderson 2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		dseq = (data1, data2)
		stat, critValues, sLev = sta.anderson_ksamp(dseq)
		slAlpha = 100 * sigLev

		if slAlpha == 10:
			cv = critValues[1]
		elif slAlpha == 5:
			cv = critValues[2]
		elif slAlpha == 2.5:
			cv = critValues[3]
		elif slAlpha == 1:
			cv = critValues[4]
		else:
			cv = None

		result = self.__printResult("stat", stat, "critValues", critValues, "critValue", cv, "significanceLevel", sLev)
		print("stat:   {:.3f}".format(stat))
		if cv is None:
			msg = "critical values value not found for provided siginificance level"
		else:
			if stat < cv:
				msg = "probably same distribution at the {:.3f} siginificance level".format(sigLev)
			else:
				msg = "probably not same distribution at the {:.3f} siginificance level".format(sigLev)
		print(msg)
		return result


	def testTwoSampleScaleAb(self, ds1, ds2, sigLev=.05):
		"""
		Ansari Bradley 2 sample scale statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Ansari Bradley 2 sample scale test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.ansari(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same scale", "probably not same scale", sigLev)
		return result

	def testTwoSampleScaleMood(self, ds1, ds2, sigLev=.05):
		"""
		Mood 2 sample scale statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Mood 2 sample scale test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.mood(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same scale", "probably not same scale", sigLev)
		return result

	def testTwoSampleVarBartlet(self, ds1, ds2, sigLev=.05):
		"""
		Ansari Bradley 2 sample scale statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Ansari Bradley 2 sample scale test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.bartlett(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same variance", "probably not same variance", sigLev)
		return result

	def testTwoSampleVarLevene(self, ds1, ds2, sigLev=.05):
		"""
		Levene 2 sample variance statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Levene 2 sample variance test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.levene(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same variance", "probably not same variance", sigLev)
		return result

	def testTwoSampleVarFk(self, ds1, ds2, sigLev=.05):
		"""
		Fligner-Killeen 2 sample variance statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Fligner-Killeen 2 sample variance test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue = sta.fligner(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue)
		self.__printStat(stat, pvalue, "probably same variance", "probably not same variance", sigLev)
		return result

	def testTwoSampleMedMood(self, ds1, ds2, sigLev=.05):
		"""
		Mood 2 sample median statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Mood 2 sample median test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat, pvalue, median, ctable = sta.median_test(data1, data2)
		result = self.__printResult("stat", stat, "pvalue", pvalue, "median", median, "contigencyTable", ctable)
		self.__printStat(stat, pvalue, "probably same median", "probably not same median", sigLev)
		return result

	def testTwoSampleZc(self, ds1, ds2, sigLev=.05):
		"""
		Zhang-C 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Zhang-C 2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		l1 = len(data1)
		l2 = len(data2)
		l = l1 + l2
			
		#find ranks
		pooled = np.concatenate([data1, data2])
		ranks = findRanks(data1, pooled)
		ranks.extend(findRanks(data2, pooled))
		
		s1 = 0.0
		for i in range(1, l1+1):
			s1 += math.log(l1 / (i - 0.5) - 1.0) * math.log(l / (ranks[i-1] - 0.5) - 1.0)
			
		s2 = 0.0
		for i in range(1, l2+1):
			s2 += math.log(l2 / (i - 0.5) - 1.0) * math.log(l / (ranks[l1 + i - 1] - 0.5) - 1.0)
		stat = (s1 + s2) / l
		print(formatFloat(3, stat, "stat:"))
		return stat

	def testTwoSampleZa(self, ds1, ds2, sigLev=.05):
		"""
		Zhang-A 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Zhang-A 2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		l1 = len(data1)
		l2 = len(data2)
		l = l1 + l2
		pooled = np.concatenate([data1, data2])
		cd1 = CumDistr(data1)
		cd2 = CumDistr(data2)
		sum = 0.0
		for i in range(1, l+1):
			v = pooled[i-1]
			f1 = cd1.getDistr(v)
			f2 = cd2.getDistr(v)
			
			t1 = f1 * math.log(f1)
			t2 = 0 if f1 == 1.0 else (1.0 - f1) * math.log(1.0 - f1)
			sum += l1 * (t1 + t2) / ((i - 0.5) * (l - i + 0.5))
			t1 = f2 * math.log(f2)
			t2 = 0 if f2 == 1.0 else (1.0 - f2) * math.log(1.0 - f2)
			sum += l2 * (t1 + t2) / ((i - 0.5) * (l - i + 0.5))
		stat = -sum
		print(formatFloat(3, stat, "stat:"))
		return stat

	def testTwoSampleZk(self, ds1, ds2, sigLev=.05):
		"""
		Zhang-K 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing Zhang-K 2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		l1 = len(data1)
		l2 = len(data2)
		l = l1 + l2
		pooled = np.concatenate([data1, data2])
		cd1 = CumDistr(data1)
		cd2 = CumDistr(data2)
		cd = CumDistr(pooled)
		
		maxStat = None
		for i in range(1, l+1):
			v = pooled[i-1]
			f1 = cd1.getDistr(v)
			f2 = cd2.getDistr(v)
			f = cd.getDistr(v)
			
			t1 = 0 if f1 == 0 else f1 * math.log(f1 / f)
			t2 = 0 if f1 == 1.0 else (1.0 - f1) * math.log((1.0 - f1) / (1.0 - f))
			stat = l1 * (t1 + t2)
			t1 = 0 if f2 == 0 else f2 * math.log(f2 / f)
			t2 = 0 if f2 == 1.0 else (1.0 - f2) * math.log((1.0 - f2) / (1.0 - f))
			stat += l2 * (t1 + t2)
			if maxStat is None or stat > maxStat:
				maxStat = stat
		print(formatFloat(3, maxStat, "stat:"))
		return maxStat


	def testTwoSampleCvm(self, ds1, ds2, sigLev=.05):
		"""
		2 sample cramer von mises
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
			sigLev: statistical significance level
		"""
		self.__printBanner("doing 2 sample CVM test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		data = np.concatenate((data1,data2))
		rdata = sta.rankdata(data)
		n = len(data1)
		m = len(data2)
		l = n + m

		s1 = 0
		for i in range(n):
			t = rdata[i] - (i+1)	
			s1 += (t * t)
		s1 *= n

		s2 = 0
		for i in range(m):
			t = rdata[i + n] - (i+1)	
			s2 += (t * t)
		s2 *= m

		u = s1 + s2
		stat = u / (n * m * l) - (4 * m * n - 1) / (6 * l)
		result = self.__printResult("stat", stat)
		return result

	def ensureSameSize(self, dlist):
		"""
		ensures all data sets are of same size
		
		Parameters
			dlist : data source list
		"""
		le = None
		for d in dlist:
			cle = len(d)
			if le is None:
				le = cle
			else:
				assert cle == le, "all data sets need to be of same size"


	def testTwoSampleWasserstein(self, ds1, ds2):
		"""
		Wasserstein 2 sample statistic	
		
		Parameters
			ds1: data set name or list or numpy array
			ds2: data set name or list or numpy array
		"""
		self.__printBanner("doing Wasserstein distance2 sample test", ds1, ds2)
		data1 = self.getNumericData(ds1)
		data2 = self.getNumericData(ds2)
		stat = sta.wasserstein_distance(data1, data2)
		sd = np.std(np.concatenate([data1, data2]))
		nstat = stat / sd
		result = self.__printResult("stat", stat, "normalizedStat", nstat)
		return result
	
	def getMaxRelMinRedFeatures(self, fdst, tdst, nfeatures, nbins=20):
		"""
		get top n features based on max relevance and min redudancy	algorithm
		
		Parameters
			fdst: list of pair of data set name or list or numpy array and data type
			tdst: target data set name or list or numpy array and data type (cat for classification num for regression)
			nfeatures : desired no of features
			nbins : no of bins for numerical data
		"""	
		self.__printBanner("doing max relevance min redundancy feature selection")
		return self.getMutInfoFeatures(fdst, tdst, nfeatures, "mrmr", nbins)	

	def getJointMutInfoFeatures(self, fdst, tdst, nfeatures, nbins=20):
		"""
		get top n features based on joint mutual infoormation	algorithm
		
		Parameters
			fdst: list of pair of data set name or list or numpy array and data type
			tdst: target data set name or list or numpy array and data type (cat for classification num for regression)
			nfeatures : desired no of features
			nbins : no of bins for numerical data
		"""	
		self.__printBanner("doingjoint mutual info feature selection")
		return self.getMutInfoFeatures(fdst, tdst, nfeatures, "jmi", nbins)
		
	def getCondMutInfoMaxFeatures(self, fdst, tdst, nfeatures, nbins=20):
		"""
		get top n features based on condition mutual information maximization algorithm
		
		Parameters
			fdst: list of pair of data set name or list or numpy array and data type
			tdst: target data set name or list or numpy array and data type (cat for classification num for regression)
			nfeatures : desired no of features
			nbins : no of bins for numerical data
		"""	
		self.__printBanner("doing conditional mutual info max feature selection")
		return self.getMutInfoFeatures(fdst, tdst, nfeatures, "cmim", nbins)

	def getInteractCapFeatures(self, fdst, tdst, nfeatures, nbins=20):
		"""
		get top n features based on interaction capping algorithm
		
		Parameters
			fdst: list of pair of data set name or list or numpy array and data type
			tdst: target data set name or list or numpy array and data type (cat for classification num for regression)
			nfeatures : desired no of features
			nbins : no of bins for numerical data
		"""	
		self.__printBanner("doing interaction capped feature selection")
		return self.getMutInfoFeatures(fdst, tdst, nfeatures, "icap", nbins)

	def getMutInfoFeatures(self, fdst, tdst, nfeatures, algo, nbins=20):
		"""
		get top n features based on various mutual information	based algorithm
		ref: Conditional likelihood maximisation : A unifying framework for information 
		theoretic feature selection, Gavin Brown
		
		Parameters
			fdst: list of pair of data set name or list or numpy array and data type
			tdst: target data set name or list or numpy array and data type (cat for classification num for regression)
			nfeatures : desired no of features
			algo: mi based feature selection algorithm
			nbins : no of bins for numerical data
		"""	
		#verify data source types types
		le = len(fdst)
		nfeatGiven = int(le / 2)
		assertGreater(nfeatGiven, nfeatures, "no of features should be greater than no of features to be selected")
		fds = list()
		types = ["num", "cat"]
		for i in range (0, le, 2):
			ds = fdst[i]
			dt = fdst[i+1]
			assertInList(dt, types, "invalid type for data source " + dt)
			data = self.getNumericData(ds) if dt == "num" else self.getCatData(ds)
			p =(ds, dt)
			fds.append(p)
		algos = ["mrmr", "jmi", "cmim", "icap"]
		assertInList(algo, algos, "invalid feature selection algo " + algo)
		
		assertInList(tdst[1], types, "invalid type for data source " + tdst[1])
		data = self.getNumericData(tdst[0]) if tdst[1] == "num" else self.getCatData(tdst[0])
		#print(fds)
		
		sfds = list()
		selected = set()
		relevancies = dict()
		for i in range(nfeatures):
			#print(i)
			scorem = None
			dsm = None
			dsmt = None
			for ds, dt in fds:
				#print(ds, dt)
				if ds not in selected:
					#relevancy
					if ds in relevancies:
						mutInfo = relevancies[ds]
					else:
						mutInfo = self.getMutualInfo([ds, dt,  tdst[0], tdst[1]], nbins)["mutInfo"]
						relevancies[ds] = mutInfo
					relev = mutInfo
					#print("relev", relev)
					
					#redundancy
					smi = 0
					reds = list()
					for sds, sdt, _ in sfds:
						#print(sds, sdt)
						mutInfo = self.getMutualInfo([ds, dt,  sds, sdt], nbins)["mutInfo"]
						mutInfoCnd = self.getCondMutualInfo([ds, dt,  sds, sdt, tdst[0], tdst[1]], nbins)["condMutInfo"] \
						if algo != "mrmr" else 0
						
						red = mutInfo - mutInfoCnd
						reds.append(red)	
						
					if algo == "mrmr" or algo == "jmi":
						redun = sum(reds) / len(sfds) if len(sfds) > 0 else 0
					elif algo == "cmim" or algo == "icap":
						redun = max(reds) if len(sfds) > 0 else 0
						if algo == "icap":
							redun = max(0, redun)
					#print("redun", redun)
					score = relev - redun
					if scorem is None or score > scorem:
						scorem = score
						dsm = ds
						dsmt = dt
						
			pa = (dsm, dsmt, scorem)
			#print(pa)
			sfds.append(pa)
			selected.add(dsm)
			
		selFeatures = list(map(lambda r : (r[0], r[2]), sfds))
		result = self.__printResult("selFeatures", selFeatures)
		return result


	def getFastCorrFeatures(self, fdst, tdst, delta, nbins=20):
		"""
		get top features based on Fast Correlation Based Filter (FCBF)
		ref: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution
		Lei Yu
		
		Parameters
			fdst: list of pair of data set name or list or numpy array and data type
			tdst: target data set name or list or numpy array and data type (cat for classification num for regression)
			delta : feature, target correlation threshold
			nbins : no of bins for numerical data
		"""	
		le = len(fdst)
		nfeatGiven = int(le / 2)
		fds = list()
		types = ["num", "cat"]
		for i in range (0, le, 2):
			ds = fdst[i]
			dt = fdst[i+1]
			assertInList(dt, types, "invalid type for data source " + dt)
			data = self.getNumericData(ds) if dt == "num" else self.getCatData(ds)
			p =(ds, dt)
			fds.append(p)
		
		assertInList(tdst[1], types, "invalid type for data source " + tdst[1])
		data = self.getNumericData(tdst[0]) if tdst[1] == "num" else self.getCatData(tdst[0])
		
		# get features with symetric uncertainty above threshold
		tentr = self.getAnyEntropy(tdst[0], tdst[1], nbins)["entropy"]
		rfeatures = list()
		fentrs = dict()
		for ds, dt in fds:
			mutInfo = self.getMutualInfo([ds, dt,  tdst[0], tdst[1]], nbins)["mutInfo"]
			fentr = self.getAnyEntropy(ds, dt, nbins)["entropy"]
			sunc = 2 * mutInfo / (tentr + fentr)
			#print("ds {}  sunc {:.3f}".format(ds, sunc))
			if sunc >= delta:
				f = [ds, dt, sunc, False]
				rfeatures.append(f)
				fentrs[ds] = fentr
		
		# sort descending of sym uncertainty
		rfeatures.sort(key=lambda e : e[2], reverse=True)
		
		#disccard redundant features
		le = len(rfeatures)
		for i in range(le):
			if rfeatures[i][3]:
				continue
			for j in range(i+1, le, 1):
				if rfeatures[j][3]:
					continue
				mutInfo = self.getMutualInfo([rfeatures[i][0], rfeatures[i][1],  rfeatures[j][0], rfeatures[j][1]], nbins)["mutInfo"]
				sunc  = 2 * mutInfo / (fentrs[rfeatures[i][0]] + fentrs[rfeatures[j][0]])
				if sunc >= rfeatures[j][2]:
					rfeatures[j][3] = True
			
		frfeatures = list(filter(lambda f : not f[3], rfeatures))
		selFeatures = list(map(lambda f : [f[0], f[2]], frfeatures))		
		result = self.__printResult("selFeatures", selFeatures)
		return result
			
	def getInfoGainFeatures(self, fdst, tdst, nfeatures, nsplit, nbins=20):
		"""
		get top n features based on information gain or entropy loss
		
		Parameters
			fdst: list of pair of data set name or list or numpy array and data type
			tdst: target data set name or list or numpy array and data type (cat for classification num for regression)
			nsplit : num of splits
			nfeatures : desired no of features
			nbins : no of bins for numerical data
		"""	
		le = len(fdst)
		nfeatGiven = int(le / 2)
		assertGreater(nfeatGiven, nfeatures, "available features should be greater than desired")
		fds = list()
		types = ["num", "cat"]
		for i in range (0, le, 2):
			ds = fdst[i]
			dt = fdst[i+1]
			assertInList(dt, types, "invalid type for data source " + dt)
			data = self.getNumericData(ds) if dt == "num" else self.getCatData(ds)
			p =(ds, dt)
			fds.append(p)
		
		assertInList(tdst[1], types, "invalid type for data source " + tdst[1])
		assertGreater(nsplit, 3, "minimum 4 splits necessary")
		tdata = self.getNumericData(tdst[0]) if tdst[1] == "num" else self.getCatData(tdst[0])
		tentr = self.getAnyEntropy(tdst[0], tdst[1], nbins)["entropy"]
		sz =len(tdata)
		
		sfds = list()
		for ds, dt in fds:
			#print(ds, dt)
			if dt == "num":
				fd = self.getNumericData(ds)
				_ , _ , vmax, vmin = self.__getBasicStats(fd)
				intv = (vmax - vmin) / nsplit
				maxig = None
				spmin = vmin + intv
				spmax = vmax - 0.9 * intv
				
				#iterate all splits
				for sp in np.arange(spmin, spmax, intv):
					ltvals = list()
					gevals = list()
					for i in range(len(fd)):
						if fd[i] < sp:
							ltvals.append(tdata[i])
						else:
							gevals.append(tdata[i])
					
					self.addListNumericData(ltvals, "spds") if tdst[1] == "num" else self.addListCatData(ltvals, "spds")
					lten = self.getAnyEntropy("spds", tdst[1], nbins)["entropy"]
					self.addListNumericData(gevals, "spds") if tdst[1] == "num" else self.addListCatData(gevals, "spds")
					geen = self.getAnyEntropy("spds", tdst[1], nbins)["entropy"]
					
					#info gain
					ig = tentr - (len(ltvals) * lten / sz + len(gevals) * geen / sz)
					if maxig is None or ig > maxig:
						maxig = ig
				
				pa = (ds, maxig)
				sfds.append(pa)
			else:
				fd = self.getCatData(ds)
				fds = set(fd)
				fdps = genPowerSet(fds)
				maxig = None
				
				#iterate all subsets
				for s in fdps:
					if len(s) == len(fds):
						continue
					invals = list()
					exvals = list()
					for i in range(len(fd)):
						if fd[i] in s:
							invals.append(tdata[i])
						else:
							exvals.append(tdata[i])
							
					self.addListNumericData(invals, "spds") if tdst[1] == "num" else self.addListCatData(invals, "spds")
					inen = self.getAnyEntropy("spds", tdst[1], nbins)["entropy"]
					self.addListNumericData(exvals, "spds") if tdst[1] == "num" else self.addListCatData(exvals, "spds")
					exen = self.getAnyEntropy("spds", tdst[1], nbins)["entropy"]

					ig = tentr - (len(invals) * inen / sz + len(exvals) * exen / sz)
					if maxig is None or ig > maxig:
						maxig = ig
					
				pa = (ds, maxig)
				sfds.append(pa)
			
		#sort of info gain
		sfds.sort(key = lambda v : v[1], reverse = True)
		
		result = self.__printResult("selFeatures", sfds[:nfeatures])
		return result
				
	def __stackData(self, *dsl):
		"""
		stacks collumd to create matrix
		
		Parameters
			dsl: data source list
		"""
		dlist = tuple(map(lambda ds : self.getNumericData(ds), dsl))
		self.ensureSameSize(dlist)
		dmat = np.column_stack(dlist)
		return dmat	

	def __printBanner(self, msg, *dsl):
		"""
		print banner for any function
		
		Parameters
			msg: message
			dsl: list of data set name or list or numpy array
		"""
		tags = list(map(lambda ds : ds if type(ds) == str else "annoynymous", dsl))
		forData = " for data sets " if tags else ""
		msg = msg + forData + " ".join(tags) 
		if self.verbose:
			print("\n== " + msg + " ==")


	def __printDone(self):
		"""
		print banner for any function
		"""
		if self.verbose:
			print("done")

	def __printStat(self, stat, pvalue, nhMsg, ahMsg, sigLev=.05):
		"""
		generic stat and pvalue output
		
		Parameters
			stat : stat value
			pvalue : p value
			nhMsg : null hypothesis violation message
			ahMsg : null hypothesis  message
			sigLev : significance level
		"""
		if self.verbose:
			print("\ntest result:")
			print("stat:   {:.3f}".format(stat))
			print("pvalue: {:.3f}".format(pvalue))
			print("significance level: {:.3f}".format(sigLev))
			print(nhMsg if pvalue > sigLev else ahMsg)

	def __printResult(self,  *values):
		"""
		print results
		
		Parameters
			values : flattened kay and value pairs
		"""
		result = dict()
		assert len(values) % 2 == 0, "key value list should have even number of items"
		for i in range(0, len(values), 2):
			result[values[i]] = values[i+1]
		if self.verbose:
			print("result details:")
			self.pp.pprint(result)
		return result
		
	def __getBasicStats(self, data):
		"""
		get mean and std dev
		
		Parameters
			data : numpy array
		"""
		mean = np.average(data)
		sd = np.std(data)
		r = (mean, sd, np.max(data), np.min(data))
		return r