Spaces:
Runtime error
Runtime error
File size: 15,147 Bytes
2fc2c1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
#!/usr/local/bin/python3
# avenir-python: Machine Learning
# Author: Pranab Ghosh
#
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# Package imports
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
import sklearn as sk
import matplotlib
import random
import jprops
from random import randint
sys.path.append(os.path.abspath("../lib"))
from util import *
from mlutil import *
from tnn import FeedForwardNetwork
"""
LSTM with one or more hidden layers with multi domensional data
"""
class LstmNetwork(nn.Module):
def __init__(self, configFile):
"""
In the constructor we instantiate two nn.Linear modules and assign them as
member variables.
Parameters
configFile : config file path
"""
defValues = dict()
defValues["common.mode"] = ("training", None)
defValues["common.model.directory"] = ("model", None)
defValues["common.model.file"] = (None, None)
defValues["common.preprocessing"] = (None, None)
defValues["common.scaling.method"] = ("zscale", None)
defValues["common.scaling.minrows"] = (50, None)
defValues["common.verbose"] = (False, None)
defValues["common.device"] = ("cpu", None)
defValues["train.data.file"] = (None, "missing training data file path")
defValues["train.data.type"] = ("numeric", None)
defValues["train.data.feat.cols"] = (None, "missing feature columns")
defValues["train.data.target.col"] = (None, "missing target column")
defValues["train.data.delim"] = (",", None)
defValues["train.input.size"] = (None, "missing input size")
defValues["train.hidden.size"] = (None, "missing hidden size")
defValues["train.output.size"] = (None, "missing output size")
defValues["train.num.layers"] = (1, None)
defValues["train.seq.len"] = (1, None)
defValues["train.batch.size"] = (32, None)
defValues["train.batch.first"] = (False, None)
defValues["train.drop.prob"] = (0, None)
defValues["train.optimizer"] = ("adam", None)
defValues["train.opt.learning.rate"] = (.0001, None)
defValues["train.opt.weight.decay"] = (0, None)
defValues["train.opt.momentum"] = (0, None)
defValues["train.opt.eps"] = (1e-08, None)
defValues["train.opt.dampening"] = (0, None)
defValues["train.opt.momentum.nesterov"] = (False, None)
defValues["train.opt.betas"] = ([0.9, 0.999], None)
defValues["train.opt.alpha"] = (0.99, None)
defValues["train.out.sequence"] = (True, None)
defValues["train.out.activation"] = ("sigmoid", None)
defValues["train.loss.fn"] = ("mse", None)
defValues["train.loss.reduction"] = ("mean", None)
defValues["train.grad.clip"] = (5, None)
defValues["train.num.iterations"] = (500, None)
defValues["train.save.model"] = (False, None)
defValues["valid.data.file"] = (None, "missing validation data file path")
defValues["valid.accuracy.metric"] = (None, None)
defValues["predict.data.file"] = (None, None)
defValues["predict.use.saved.model"] = (True, None)
defValues["predict.output"] = ("binary", None)
defValues["predict.feat.pad.size"] = (60, None)
self.config = Configuration(configFile, defValues)
super(LstmNetwork, self).__init__()
def getConfig(self):
return self.config
def buildModel(self):
"""
Loads configuration and builds the various piecess necessary for the model
"""
torch.manual_seed(9999)
self.verbose = self.config.getStringConfig("common.verbose")[0]
self.inputSize = self.config.getIntConfig("train.input.size")[0]
self.outputSize = self.config.getIntConfig("train.output.size")[0]
self.nLayers = self.config.getIntConfig("train.num.layers")[0]
self.hiddenSize = self.config.getIntConfig("train.hidden.size")[0]
self.seqLen = self.config.getIntConfig("train.seq.len")[0]
self.batchSize = self.config.getIntConfig("train.batch.size")[0]
self.batchFirst = self.config.getBooleanConfig("train.batch.first")[0]
dropProb = self.config.getFloatConfig("train.drop.prob")[0]
self.outSeq = self.config.getBooleanConfig("train.out.sequence")[0]
self.device = FeedForwardNetwork.getDevice(self)
#model
self.lstm = nn.LSTM(self.inputSize, self.hiddenSize, self.nLayers, dropout=dropProb, batch_first=self.batchFirst)
self.linear = nn.Linear(self.hiddenSize, self.outputSize)
outAct = self.config.getStringConfig("train.out.activation")[0]
self.outAct = FeedForwardNetwork.createActivation(outAct)
#load training data
dataFilePath = self.config.getStringConfig("train.data.file")[0]
self.fCols = self.config.getIntListConfig("train.data.feat.cols")[0]
assert len(self.fCols) == 2, "specify only start and end columns of features"
self.tCol = self.config.getIntConfig("train.data.target.col")[0]
self.delim = self.config.getStringConfig("train.data.delim")[0]
self.fData, self.tData = self.loadData(dataFilePath, self.delim, self.fCols[0],self.fCols[1], self.tCol)
self.fData = torch.from_numpy(self.fData)
self.fData = self.fData.to(self.device)
self.tData = torch.from_numpy(self.tData)
self.tData = self.tData.to(self.device)
#load validation data
vaDataFilePath = self.config.getStringConfig("valid.data.file")[0]
self.vfData, self.vtData = self.loadData(vaDataFilePath, self.delim, self.fCols[0], self.fCols[1], self.tCol)
self.vfData = torch.from_numpy(self.vfData)
self.vfData = self.vfData.to(self.device)
self.vtData = torch.from_numpy(self.vtData)
self.vtData = self.vtData.to(self.device)
self.batchSize = self.config.getIntConfig("train.batch.size")[0]
self.dataSize = self.fData.shape[0]
self.numBatch = int(self.dataSize / self.batchSize)
self.restored = False
self.to(self.device)
def loadData(self, filePath, delim, scolStart, scolEnd, targetCol):
"""
loads data for file with one sequence per line and data can be a vector
Parameters
filePath : file path
delim : field delemeter
scolStart : seq column start index
scolEnd : seq column end index
targetCol : target field col index
"""
if targetCol >= 0:
#include target column
cols = list(range(scolStart, scolEnd + 1, 1))
cols.append(targetCol)
data = np.loadtxt(filePath, delimiter=delim, usecols=cols)
#one output for whole sequence
sData = data[:, :-1]
if (self.config.getStringConfig("common.preprocessing")[0] == "scale"):
sData = self.scaleSeqData(sData)
tData = data[:, -1]
#target int (index into class labels) for classification
sData = sData.astype(np.float32)
tData = tData.astype(np.float32) if self.outputSize == 1 else tData.astype(np.long)
exData = (sData, tData)
else:
#exclude target column
cols = list(range(scolStart, scolEnd + 1, 1))
data = np.loadtxt(filePath, delimiter=delim, usecols=cols)
#one output for whole sequence
sData = data
if (self.config.getStringConfig("common.preprocessing")[0] == "scale"):
sData = self.scaleSeqData(sData)
#target int (index into class labels) for classification
sData = sData.astype(np.float32)
exData = sData
return exData
def scaleSeqData(self, sData):
"""
scales data transforming non squence format
Parameters
sData : sequence data
"""
scalingMethod = self.config.getStringConfig("common.scaling.method")[0]
sData = fromMultDimSeqToTabular(sData, self.inputSize, self.seqLen)
sData = scaleData(sData, scalingMethod)
sData = fromTabularToMultDimSeq(sData, self.inputSize, self.seqLen)
return sData
def formattedBatchGenarator(self):
"""
transforms traing data from (dataSize, seqLength x inputSize) to (batch, seqLength, inputSize) tensor
or (seqLength, batch, inputSize) tensor
"""
for _ in range(self.numBatch):
bfData = torch.zeros([self.batchSize, self.seqLen, self.inputSize], dtype=torch.float32) if self.batchFirst\
else torch.zeros([self.seqLen, self.batchSize, self.inputSize], dtype=torch.float32)
tdType = torch.float32 if self.outputSize == 1 else torch.long
btData = torch.zeros([self.batchSize], dtype=tdType)
i = 0
for bdi in range(self.batchSize):
di = sampleUniform(0, self.dataSize-1)
row = self.fData[di]
for ci, cv in enumerate(row):
si = int(ci / self.inputSize)
ii = ci % self.inputSize
if self.batchFirst:
bfData[bdi][si][ii] = cv
else:
#print(si, bdi, ii)
bfData[si][bdi][ii] = cv
btData[i] = self.tData[di]
i += 1
#for seq output correct first 2 dimensions
if self.outSeq and not self.batchFirst:
btData = torch.transpose(btData,0,1)
yield (bfData, btData)
def formatData(self, fData, tData=None):
"""
transforms validation or prediction data data from (dataSize, seqLength x inputSize) to
(batch, seqLength, inputSize) tensor or (seqLength, batch, inputSize) tensor
Parameters
fData : feature data
tData : target data
"""
dSize = fData.shape[0]
bfData = torch.zeros([dSize, self.seqLen, self.inputSize], dtype=torch.float32) if self.batchFirst\
else torch.zeros([self.seqLen, dSize, self.inputSize], dtype=torch.float32)
for ri in range(dSize):
row = fData[ri]
for ci, cv in enumerate(row):
si = int(ci / self.inputSize)
ii = ci % self.inputSize
if self.batchFirst:
bfData[ri][si][ii] = cv
else:
bfData[si][ri][ii] = cv
if tData is not None:
btData = torch.transpose(tData,0,1) if self.outSeq and not self.batchFirst else tData
formData = (bfData, btData)
else:
formData = bfData
return formData
def forward(self, x, h):
"""
Forward pass
Parameters
x : input data
h : targhiddenet state
"""
out, hout = self.lstm(x,h)
if self.outSeq:
# seq to seq prediction
out = out.view(-1, self.hiddenSize)
out = self.linear(out)
if self.outAct is not None:
out = self.outAct(out)
out = out.view(self.batchSize * self.seqLen, -1)
else:
#seq to one prediction
out = out[self.seqLen - 1].view(-1, self.hiddenSize)
out = self.linear(out)
if self.outAct is not None:
out = self.outAct(out)
#out = out.view(self.batchSize, -1)
return out, hout
def initHidden(self, batch):
"""
Initialize hidden weights
Parameters
batch : batch size
"""
hidden = (torch.zeros(self.nLayers,batch,self.hiddenSize),
torch.zeros(self.nLayers,batch,self.hiddenSize))
return hidden
def trainLstm(self):
"""
train lstm
"""
print("..starting training")
self.train()
#device = self.config.getStringConfig("common.device")[0]
#self.to(device)
optimizerName = self.config.getStringConfig("train.optimizer")[0]
self.optimizer = FeedForwardNetwork.createOptimizer(self, optimizerName)
lossFn = self.config.getStringConfig("train.loss.fn")[0]
criterion = FeedForwardNetwork.createLossFunction(self, lossFn)
clip = self.config.getFloatConfig("train.grad.clip")[0]
numIter = self.config.getIntConfig("train.num.iterations")[0]
accMetric = self.config.getStringConfig("valid.accuracy.metric")[0]
for it in range(numIter):
b = 0
for inputs, labels in self.formattedBatchGenarator():
#forward pass
hid = self.initHidden(self.batchSize)
hid = (hid[0].to(self.device), hid[1].to(self.device))
inputs, labels = inputs.to(self.device), labels.to(self.device)
output, hid = self(inputs, hid)
#loss
if self.outSeq:
labels = labels.view(self.batchSize * self.seqLen, -1)
loss = criterion(output, labels)
if self.verbose and it % 50 == 0 and b % 10 == 0:
print("epoch {} batch {} loss {:.6f}".format(it, b, loss.item()))
# zero gradients, perform a backward pass, and update the weights.
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.parameters(), clip)
self.optimizer.step()
b += 1
#validate
print("..validating model")
self.eval()
with torch.no_grad():
fData, tData = self.formatData(self.vfData, self.vtData)
fData = fData.to(self.device)
vsize = tData.shape[0]
hid = self.initHidden(vsize)
hid = (hid[0].to(self.device), hid[1].to(self.device))
yPred, _ = self(fData, hid)
yPred = yPred.data.cpu().numpy()
yActual = tData.data.cpu().numpy()
if self.verbose:
print("\npredicted \t\t actual")
for i in range(vsize):
print(str(yPred[i]) + "\t" + str(yActual[i]))
score = perfMetric(accMetric, yActual, yPred)
print(formatFloat(3, score, "perf score"))
#save
modelSave = self.config.getBooleanConfig("train.model.save")[0]
if modelSave:
FeedForwardNetwork.saveCheckpt(self)
def predictLstm(self):
"""
predict
"""
print("..predicting using model")
useSavedModel = self.config.getBooleanConfig("predict.use.saved.model")[0]
if useSavedModel:
FeedForwardNetwork.restoreCheckpt(self)
else:
self.trainLstm()
prDataFilePath = self.config.getStringConfig("predict.data.file")[0]
pfData = self.loadData(prDataFilePath, self.delim, self.fCols[0], self.fCols[1], -1)
pfData = torch.from_numpy(pfData)
dsize = pfData.shape[0]
#predict
#device = self.config.getStringConfig("common.device")[0]
self.eval()
with torch.no_grad():
fData = self.formatData(pfData)
fData = fData.to(self.device)
hid = self.initHidden(dsize)
hid = (hid[0].to(self.device), hid[1].to(self.device))
yPred, _ = self(fData, hid)
yPred = yPred.data.cpu().numpy()
if self.outputSize == 2:
#classification
yPred = FeedForwardNetwork.processClassifOutput(yPred, self.config)
# print prediction
FeedForwardNetwork.printPrediction(yPred, self.config, prDataFilePath)
|