Spaces:
Runtime error
Runtime error
File size: 16,090 Bytes
2fc2c1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
#!/usr/local/bin/python3
# avenir-python: Machine Learning
# Author: Pranab Ghosh
#
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# Package imports
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import sklearn as sk
import matplotlib
import random
import jprops
from io import StringIO
from sklearn.model_selection import cross_val_score
import joblib
from random import randint
from io import StringIO
sys.path.append(os.path.abspath("../lib"))
from util import *
from mlutil import *
from pasearch import *
#base classifier class
class BaseClassifier(object):
def __init__(self, configFile, defValues, mname):
self.config = Configuration(configFile, defValues)
self.subSampleRate = None
self.featData = None
self.clsData = None
self.classifier = None
self.trained = False
self.verbose = self.config.getBooleanConfig("common.verbose")[0]
logFilePath = self.config.getStringConfig("common.logging.file")[0]
logLevName = self.config.getStringConfig("common.logging.level")[0]
self.logger = createLogger(mname, logFilePath, logLevName)
self.logger.info("********* starting session")
def initConfig(self, configFile, defValues):
"""
initialize config
"""
self.config = Configuration(configFile, defValues)
def getConfig(self):
"""
get config object
"""
return self.config
def setConfigParam(self, name, value):
"""
set config param
"""
self.config.setParam(name, value)
def getMode(self):
"""
get mode
"""
return self.config.getStringConfig("common.mode")[0]
def getSearchParamStrategy(self):
"""
get search parameter
"""
return self.config.getStringConfig("train.search.param.strategy")[0]
def train(self):
"""
train model
"""
#build model
self.buildModel()
# training data
if self.featData is None:
(featData, clsData) = self.prepTrainingData()
(self.featData, self.clsData) = (featData, clsData)
else:
(featData, clsData) = (self.featData, self.clsData)
if self.subSampleRate is not None:
(featData, clsData) = subSample(featData, clsData, self.subSampleRate, False)
self.logger.info("subsample size " + str(featData.shape[0]))
# parameters
modelSave = self.config.getBooleanConfig("train.model.save")[0]
#train
self.logger.info("...training model")
self.classifier.fit(featData, clsData)
score = self.classifier.score(featData, clsData)
successCriterion = self.config.getStringConfig("train.success.criterion")[0]
result = None
if successCriterion == "accuracy":
self.logger.info("accuracy with training data {:06.3f}".format(score))
result = score
elif successCriterion == "error":
error = 1.0 - score
self.logger.info("error with training data {:06.3f}".format(error))
result = error
else:
raise ValueError("invalid success criterion")
if modelSave:
self.logger.info("...saving model")
modelFilePath = self.getModelFilePath()
joblib.dump(self.classifier, modelFilePath)
self.trained = True
return result
def trainValidate(self):
"""
train with k fold validation
"""
#build model
self.buildModel()
# training data
(featData, clsData) = self.prepTrainingData()
#parameter
validation = self.config.getStringConfig("train.validation")[0]
numFolds = self.config.getIntConfig("train.num.folds")[0]
successCriterion = self.config.getStringConfig("train.success.criterion")[0]
scoreMethod = self.config.getStringConfig("train.score.method")[0]
#train with validation
self.logger.info("...training and kfold cross validating model")
scores = cross_val_score(self.classifier, featData, clsData, cv=numFolds,scoring=scoreMethod)
avScore = np.mean(scores)
result = self.reportResult(avScore, successCriterion, scoreMethod)
return result
def trainValidateSearch(self):
"""
train with k fold validation and search parameter space for optimum
"""
self.logger.info("...starting train validate with parameter search")
searchStrategyName = self.getSearchParamStrategy()
if searchStrategyName is not None:
if searchStrategyName == "grid":
searchStrategy = GuidedParameterSearch(self.verbose)
elif searchStrategyName == "random":
searchStrategy = RandomParameterSearch(self.verbose)
maxIter = self.config.getIntConfig("train.search.max.iterations")[0]
searchStrategy.setMaxIter(maxIter)
elif searchStrategyName == "simuan":
searchStrategy = SimulatedAnnealingParameterSearch(self.verbose)
maxIter = self.config.getIntConfig("train.search.max.iterations")[0]
searchStrategy.setMaxIter(maxIter)
temp = self.config.getFloatConfig("train.search.sa.temp")[0]
searchStrategy.setTemp(temp)
tempRedRate = self.config.getFloatConfig("train.search.sa.temp.red.rate")[0]
searchStrategy.setTempReductionRate(tempRedRate)
else:
raise ValueError("invalid paramtere search strategy")
else:
raise ValueError("missing search strategy")
# add search params
searchParams = self.config.getStringConfig("train.search.params")[0].split(",")
searchParamNames = []
extSearchParamNames = []
if searchParams is not None:
for searchParam in searchParams:
paramItems = searchParam.split(":")
extSearchParamNames.append(paramItems[0])
#get rid name component search
paramNameItems = paramItems[0].split(".")
del paramNameItems[1]
paramItems[0] = ".".join(paramNameItems)
searchStrategy.addParam(paramItems)
searchParamNames.append(paramItems[0])
else:
raise ValueError("missing search parameter list")
# add search param data list for each param
for (searchParamName,extSearchParamName) in zip(searchParamNames,extSearchParamNames):
searchParamData = self.config.getStringConfig(extSearchParamName)[0].split(",")
searchStrategy.addParamVaues(searchParamName, searchParamData)
# train and validate for various param value combination
searchStrategy.prepare()
paramValues = searchStrategy.nextParamValues()
searchResults = []
while paramValues is not None:
self.logger.info("...next parameter set")
paramStr = ""
for paramValue in paramValues:
self.setConfigParam(paramValue[0], str(paramValue[1]))
paramStr = paramStr + paramValue[0] + "=" + str(paramValue[1]) + " "
result = self.trainValidate()
searchStrategy.setCost(result)
searchResults.append((paramStr, result))
paramValues = searchStrategy.nextParamValues()
# output
self.logger.info("all parameter search results")
for searchResult in searchResults:
self.logger.info("{}\t{06.3f}".format(searchResult[0], searchResult[1]))
self.logger.info("best parameter search result")
bestSolution = searchStrategy.getBestSolution()
paramStr = ""
for paramValue in bestSolution[0]:
paramStr = paramStr + paramValue[0] + "=" + str(paramValue[1]) + " "
self.logger.info("{}\t{:06.3f}".format(paramStr, bestSolution[1]))
return bestSolution
def validate(self):
"""
predict
"""
# create model
useSavedModel = self.config.getBooleanConfig("validate.use.saved.model")[0]
if useSavedModel:
# load saved model
self.logger.info("...loading model")
modelFilePath = self.getModelFilePath()
self.classifier = joblib.load(modelFilePath)
else:
# train model
if not self.trained:
self.train()
# prepare test data
(featData, clsDataActual) = self.prepValidationData()
#predict
self.logger.info("...predicting")
clsDataPred = self.classifier.predict(featData)
self.logger.info("...validating")
#print clsData
scoreMethod = self.config.getStringConfig("validate.score.method")[0]
if scoreMethod == "accuracy":
accuracy = sk.metrics.accuracy_score(clsDataActual, clsDataPred)
self.logger.info("accuracy:")
self.logger.info(accuracy)
elif scoreMethod == "confusionMatrix":
confMatrx = sk.metrics.confusion_matrix(clsDataActual, clsDataPred)
self.logger.info("confusion matrix:")
self.logger.info(confMatrx)
def predictx(self):
"""
predict
"""
# create model
self.prepModel()
# prepare test data
featData = self.prepPredictData()
#predict
self.logger.info("...predicting")
clsData = self.classifier.predict(featData)
self.logger.info(clsData)
def predict(self, recs=None):
"""
predict with in memory data
"""
# create model
self.prepModel()
#input record
if recs:
#passed record
featData = self.prepStringPredictData(recs)
if (featData.ndim == 1):
featData = featData.reshape(1, -1)
else:
#file
featData = self.prepPredictData()
#predict
self.logger.info("...predicting")
clsData = self.classifier.predict(featData)
return clsData
def predictProb(self, recs):
"""
predict probability with in memory data
"""
raise ValueError("can not predict class probability")
def prepModel(self):
"""
preparing model
"""
useSavedModel = self.config.getBooleanConfig("predict.use.saved.model")[0]
if (useSavedModel and not self.classifier):
# load saved model
self.logger.info("...loading saved model")
modelFilePath = self.getModelFilePath()
self.classifier = joblib.load(modelFilePath)
else:
# train model
if not self.trained:
self.train()
def prepTrainingData(self):
"""
loads and prepares training data
"""
# parameters
dataFile = self.config.getStringConfig("train.data.file")[0]
fieldIndices = self.config.getStringConfig("train.data.fields")[0]
if not fieldIndices is None:
fieldIndices = strToIntArray(fieldIndices, ",")
featFieldIndices = self.config.getStringConfig("train.data.feature.fields")[0]
if not featFieldIndices is None:
featFieldIndices = strToIntArray(featFieldIndices, ",")
classFieldIndex = self.config.getIntConfig("train.data.class.field")[0]
#training data
(data, featData) = loadDataFile(dataFile, ",", fieldIndices, featFieldIndices)
if (self.config.getStringConfig("common.preprocessing")[0] == "scale"):
scalingMethod = self.config.getStringConfig("common.scaling.method")[0]
featData = scaleData(featData, scalingMethod)
clsData = extrColumns(data, classFieldIndex)
clsData = np.array([int(a) for a in clsData])
return (featData, clsData)
def prepValidationData(self):
"""
loads and prepares training data
"""
# parameters
dataFile = self.config.getStringConfig("validate.data.file")[0]
fieldIndices = self.config.getStringConfig("validate.data.fields")[0]
if not fieldIndices is None:
fieldIndices = strToIntArray(fieldIndices, ",")
featFieldIndices = self.config.getStringConfig("validate.data.feature.fields")[0]
if not featFieldIndices is None:
featFieldIndices = strToIntArray(featFieldIndices, ",")
classFieldIndex = self.config.getIntConfig("validate.data.class.field")[0]
#training data
(data, featData) = loadDataFile(dataFile, ",", fieldIndices, featFieldIndices)
if (self.config.getStringConfig("common.preprocessing")[0] == "scale"):
scalingMethod = self.config.getStringConfig("common.scaling.method")[0]
featData = scaleData(featData, scalingMethod)
clsData = extrColumns(data, classFieldIndex)
clsData = [int(a) for a in clsData]
return (featData, clsData)
def prepPredictData(self):
"""
loads and prepares training data
"""
# parameters
dataFile = self.config.getStringConfig("predict.data.file")[0]
if dataFile is None:
raise ValueError("missing prediction data file")
fieldIndices = self.config.getStringConfig("predict.data.fields")[0]
if not fieldIndices is None:
fieldIndices = strToIntArray(fieldIndices, ",")
featFieldIndices = self.config.getStringConfig("predict.data.feature.fields")[0]
if not featFieldIndices is None:
featFieldIndices = strToIntArray(featFieldIndices, ",")
#training data
(data, featData) = loadDataFile(dataFile, ",", fieldIndices, featFieldIndices)
if (self.config.getStringConfig("common.preprocessing")[0] == "scale"):
scalingMethod = self.config.getStringConfig("common.scaling.method")[0]
featData = scaleData(featData, scalingMethod)
return featData
def prepStringPredictData(self, recs):
"""
prepare string predict data
"""
frecs = StringIO(recs)
featData = np.loadtxt(frecs, delimiter=',')
return featData
def getModelFilePath(self):
"""
get model file path
"""
modelDirectory = self.config.getStringConfig("common.model.directory")[0]
modelFile = self.config.getStringConfig("common.model.file")[0]
if modelFile is None:
raise ValueError("missing model file name")
modelFilePath = modelDirectory + "/" + modelFile
return modelFilePath
def reportResult(self, score, successCriterion, scoreMethod):
"""
report result
"""
if successCriterion == "accuracy":
self.logger.info("average " + scoreMethod + " with k fold cross validation {:06.3f}".format(score))
result = score
elif successCriterion == "error":
error = 1.0 - score
self.logger.info("average error with k fold cross validation {:06.3f}".format(error))
result = error
else:
raise ValueError("invalid success criterion")
return result
def autoTrain(self):
"""
auto train
"""
maxTestErr = self.config.getFloatConfig("train.auto.max.test.error")[0]
maxErr = self.config.getFloatConfig("train.auto.max.error")[0]
maxErrDiff = self.config.getFloatConfig("train.auto.max.error.diff")[0]
self.config.setParam("train.model.save", "False")
#train, validate and serach optimum parameter
result = self.trainValidateSearch()
testError = result[1]
#subsample training size to match train size for k fold validation
numFolds = self.config.getIntConfig("train.num.folds")[0]
self.subSampleRate = float(numFolds - 1) / numFolds
#train only with optimum parameter values
for paramValue in result[0]:
pName = paramValue[0]
pValue = paramValue[1]
self.logger.info(pName + " " + pValue)
self.setConfigParam(pName, pValue)
trainError = self.train()
if testError < maxTestErr:
# criteria based on test error only
self.logger.info("Successfullt trained. Low test error level")
status = 1
else:
# criteria based on bias error and generalization error
avError = (trainError + testError) / 2
diffError = testError - trainError
self.logger.info("Auto training completed: training error {:06.3f} test error: {:06.3f}".format(trainError, testError))
self.logger.info("Average of test and training error: {:06.3f} test and training error diff: {:06.3f}".format(avError, diffError))
if diffError > maxErrDiff:
# high generalization error
if avError > maxErr:
# high bias error
self.logger.info("High generalization error and high error. Need larger training data set and increased model complexity")
status = 4
else:
# low bias error
self.logger.info("High generalization error. Need larger training data set")
status = 3
else:
# low generalization error
if avError > maxErr:
# high bias error
self.logger.info("Converged, but with high error rate. Need to increase model complexity")
status = 2
else:
# low bias error
self.logger.info("Successfullt trained. Low generalization error and low bias error level")
status = 1
if status == 1:
#train final model, use all data and save model
self.logger.info("...training the final model")
self.config.setParam("train.model.save", "True")
self.subSampleRate = None
trainError = self.train()
self.logger.info("training error in final model {:06.3f}".format(trainError))
return status
|