File size: 4,751 Bytes
3741df5
c0a5eb4
 
 
3741df5
cd14b20
c0a5eb4
 
3741df5
 
 
 
3924b43
 
fd7345f
3924b43
 
 
 
 
 
3741df5
 
 
3924b43
 
 
 
 
 
3741df5
3924b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd14b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924b43
cd14b20
 
 
 
 
 
 
3924b43
cd14b20
 
 
 
 
 
3924b43
cd14b20
3924b43
cd14b20
c0a5eb4
cd14b20
 
 
3924b43
cd14b20
3924b43
cd14b20
c0a5eb4
cd14b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a5eb4
 
3924b43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import gradio as gr
import numpy as np
import random
import spaces  # ZeroGPU integration
from diffusers import DiffusionPipeline
import torch

# Get Hugging Face token from environment variable
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
if not HF_TOKEN:
    raise ValueError("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.")

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"  # Replace with the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(
    model_repo_id, torch_dtype=torch_dtype, use_auth_token=HF_TOKEN
)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU  # ZeroGPU decorator
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    # Seed Handling
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # Generate Image
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
/* CSS Styling (remains unchanged from earlier examples) */
"""

# Higher Defaults for Advanced Settings
DEFAULT_STEPS = 50
DEFAULT_GUIDANCE = 7.5

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("<div id='header'><h1 id='title'>Veginator: Veshup's Image Generation AI</h1><p id='subtitle'>Create stunning images with just a prompt. Powered by cutting-edge AI technology.</p></div>")

        with gr.Row():
            prompt = gr.Text(
                label="Your Creative Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt here...",
                container=False,
            )

            run_button = gr.Button("Generate Image", scale=0, variant="primary", elem_classes="gradio-button")

        result = gr.Image(label="Generated Image", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative Prompt",
                max_lines=1,
                placeholder="Enter a negative prompt if needed",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Higher default resolution
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Higher default resolution
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.0,
                    maximum=15.0,
                    step=0.1,
                    value=DEFAULT_GUIDANCE,  # Higher guidance by default
                )

                num_inference_steps = gr.Slider(
                    label="Number of Inference Steps",
                    minimum=1,
                    maximum=150,  # Increased maximum steps
                    step=1,
                    value=DEFAULT_STEPS,  # Higher inference steps for quality
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()