File size: 4,751 Bytes
3741df5 c0a5eb4 3741df5 cd14b20 c0a5eb4 3741df5 3924b43 fd7345f 3924b43 3741df5 3924b43 3741df5 3924b43 cd14b20 3924b43 cd14b20 3924b43 cd14b20 3924b43 cd14b20 3924b43 cd14b20 c0a5eb4 cd14b20 3924b43 cd14b20 3924b43 cd14b20 c0a5eb4 cd14b20 c0a5eb4 3924b43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import gradio as gr
import numpy as np
import random
import spaces # ZeroGPU integration
from diffusers import DiffusionPipeline
import torch
# Get Hugging Face token from environment variable
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
if not HF_TOKEN:
raise ValueError("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.")
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large" # Replace with the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(
model_repo_id, torch_dtype=torch_dtype, use_auth_token=HF_TOKEN
)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU # ZeroGPU decorator
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
# Seed Handling
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate Image
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
/* CSS Styling (remains unchanged from earlier examples) */
"""
# Higher Defaults for Advanced Settings
DEFAULT_STEPS = 50
DEFAULT_GUIDANCE = 7.5
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<div id='header'><h1 id='title'>Veginator: Veshup's Image Generation AI</h1><p id='subtitle'>Create stunning images with just a prompt. Powered by cutting-edge AI technology.</p></div>")
with gr.Row():
prompt = gr.Text(
label="Your Creative Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt here...",
container=False,
)
run_button = gr.Button("Generate Image", scale=0, variant="primary", elem_classes="gradio-button")
result = gr.Image(label="Generated Image", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=1,
placeholder="Enter a negative prompt if needed",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768, # Higher default resolution
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768, # Higher default resolution
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=15.0,
step=0.1,
value=DEFAULT_GUIDANCE, # Higher guidance by default
)
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=1,
maximum=150, # Increased maximum steps
step=1,
value=DEFAULT_STEPS, # Higher inference steps for quality
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|