Spaces:
Runtime error
Runtime error
File size: 21,047 Bytes
61364af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
# A portable utility module for the demo programs
# %%
import os
import numpy as np
import einops as ein
import torch
from torch import nn
from torch.nn import functional as F
import fast_pytorch_kmeans as fpk
from typing import Literal, Union, List
# %%
# Extract features from a Dino-v2 model
_DINO_V2_MODELS = Literal["dinov2_vits14", "dinov2_vitb14", \
"dinov2_vitl14", "dinov2_vitg14"]
_DINO_FACETS = Literal["query", "key", "value", "token"]
class DinoV2ExtractFeatures:
"""
Extract features from an intermediate layer in Dino-v2
"""
def __init__(self, dino_model: _DINO_V2_MODELS, layer: int,
facet: _DINO_FACETS="token", use_cls=False,
norm_descs=True, device: str = "cpu") -> None:
"""
Parameters:
- dino_model: The DINO-v2 model to use
- layer: The layer to extract features from
- facet: "query", "key", or "value" for the attention
facets. "token" for the output of the layer.
- use_cls: If True, the CLS token (first item) is also
included in the returned list of descriptors.
Otherwise, only patch descriptors are used.
- norm_descs: If True, the descriptors are normalized
- device: PyTorch device to use
"""
self.vit_type: str = dino_model
self.dino_model: nn.Module = torch.hub.load(
'facebookresearch/dinov2', dino_model)
self.device = torch.device(device)
self.dino_model = self.dino_model.eval().to(self.device)
self.layer: int = layer
self.facet = facet
if self.facet == "token":
self.fh_handle = self.dino_model.blocks[self.layer].\
register_forward_hook(
self._generate_forward_hook())
else:
self.fh_handle = self.dino_model.blocks[self.layer].\
attn.qkv.register_forward_hook(
self._generate_forward_hook())
self.use_cls = use_cls
self.norm_descs = norm_descs
# Hook data
self._hook_out = None
def _generate_forward_hook(self):
def _forward_hook(module, inputs, output):
self._hook_out = output
return _forward_hook
def __call__(self, img: torch.Tensor) -> torch.Tensor:
"""
Parameters:
- img: The input image
"""
with torch.no_grad():
res = self.dino_model(img)
if self.use_cls:
res = self._hook_out
else:
res = self._hook_out[:, 1:, ...]
if self.facet in ["query", "key", "value"]:
d_len = res.shape[2] // 3
if self.facet == "query":
res = res[:, :, :d_len]
elif self.facet == "key":
res = res[:, :, d_len:2*d_len]
else:
res = res[:, :, 2*d_len:]
if self.norm_descs:
res = F.normalize(res, dim=-1)
self._hook_out = None # Reset the hook
return res
def __del__(self):
self.fh_handle.remove()
# %%
# VLAD global descriptor implementation
class VLAD:
"""
An implementation of VLAD algorithm given database and query
descriptors.
Constructor arguments:
- num_clusters: Number of cluster centers for VLAD
- desc_dim: Descriptor dimension. If None, then it is
inferred when running `fit` method.
- intra_norm: If True, intra normalization is applied
when constructing VLAD
- norm_descs: If True, the given descriptors are
normalized before training and predicting
VLAD descriptors. Different from the
`intra_norm` argument.
- dist_mode: Distance mode for KMeans clustering for
vocabulary (not residuals). Must be in
{'euclidean', 'cosine'}.
- vlad_mode: Mode for descriptor assignment (to cluster
centers) in VLAD generation. Must be in
{'soft', 'hard'}
- soft_temp: Temperature for softmax (if 'vald_mode' is
'soft') for assignment
- cache_dir: Directory to cache the VLAD vectors. If
None, then no caching is done. If a str,
then it is assumed as the folder path. Use
absolute paths.
Notes:
- Arandjelovic, Relja, and Andrew Zisserman. "All about VLAD."
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. 2013.
"""
def __init__(self, num_clusters: int,
desc_dim: Union[int, None]=None,
intra_norm: bool=True, norm_descs: bool=True,
dist_mode: str="cosine", vlad_mode: str="hard",
soft_temp: float=1.0,
cache_dir: Union[str,None]=None) -> None:
self.num_clusters = num_clusters
self.desc_dim = desc_dim
self.intra_norm = intra_norm
self.norm_descs = norm_descs
self.mode = dist_mode
self.vlad_mode = str(vlad_mode).lower()
assert self.vlad_mode in ['soft', 'hard']
self.soft_temp = soft_temp
# Set in the training phase
self.c_centers = None
self.kmeans = None
# Set the caching
self.cache_dir = cache_dir
if self.cache_dir is not None:
self.cache_dir = os.path.abspath(os.path.expanduser(
self.cache_dir))
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
print(f"Created cache directory: {self.cache_dir}")
else:
print("Warning: Cache directory already exists: " \
f"{self.cache_dir}")
else:
print("VLAD caching is disabled.")
def can_use_cache_vlad(self):
"""
Checks if the cache directory is a valid cache directory.
For it to be valid, it must exist and should at least
include the cluster centers file.
Returns:
- True if the cache directory is valid
- False if
- the cache directory doesn't exist
- exists but doesn't contain the cluster centers
- no caching is set in constructor
"""
if self.cache_dir is None:
return False
if not os.path.exists(self.cache_dir):
return False
if os.path.exists(f"{self.cache_dir}/c_centers.pt"):
return True
else:
return False
def can_use_cache_ids(self,
cache_ids: Union[List[str], str, None],
only_residuals: bool=False) -> bool:
"""
Checks if the given cache IDs exist in the cache directory
and returns True if all of them exist.
The cache is stored in the following files:
- c_centers.pt: Cluster centers
- `cache_id`_r.pt: Residuals for VLAD
- `cache_id`_l.pt: Labels for VLAD (hard assignment)
- `cache_id`_s.pt: Soft assignment for VLAD
The function returns False if cache cannot be used or if
any of the cache IDs are not found. If all cache IDs are
found, then True is returned.
This function is mainly for use outside the VLAD class.
"""
if not self.can_use_cache_vlad():
return False
if cache_ids is None:
return False
if isinstance(cache_ids, str):
cache_ids = [cache_ids]
for cache_id in cache_ids:
if not os.path.exists(
f"{self.cache_dir}/{cache_id}_r.pt"):
return False
if self.vlad_mode == "hard" and not os.path.exists(
f"{self.cache_dir}/{cache_id}_l.pt") and not \
only_residuals:
return False
if self.vlad_mode == "soft" and not os.path.exists(
f"{self.cache_dir}/{cache_id}_s.pt") and not \
only_residuals:
return False
return True
# Generate cluster centers
def fit(self, train_descs: Union[np.ndarray, torch.Tensor, None]):
"""
Using the training descriptors, generate the cluster
centers (vocabulary). Function expects all descriptors in
a single list (see `fit_and_generate` for a batch of
images).
If the cache directory is valid, then retrieves cluster
centers from there (the `train_descs` are ignored).
Otherwise, stores the cluster centers in the cache
directory (if using caching).
Parameters:
- train_descs: Training descriptors of shape
[num_train_desc, desc_dim]. If None, then
caching should be valid (else ValueError).
"""
# Clustering to create vocabulary
self.kmeans = fpk.KMeans(self.num_clusters, mode=self.mode)
# Check if cache exists
if self.can_use_cache_vlad():
print("Using cached cluster centers")
self.c_centers = torch.load(
f"{self.cache_dir}/c_centers.pt")
self.kmeans.centroids = self.c_centers
if self.desc_dim is None:
self.desc_dim = self.c_centers.shape[1]
print(f"Desc dim set to {self.desc_dim}")
else:
if train_descs is None:
raise ValueError("No training descriptors given")
if type(train_descs) == np.ndarray:
train_descs = torch.from_numpy(train_descs).\
to(torch.float32)
if self.desc_dim is None:
self.desc_dim = train_descs.shape[1]
if self.norm_descs:
train_descs = F.normalize(train_descs)
self.kmeans.fit(train_descs)
self.c_centers = self.kmeans.centroids
if self.cache_dir is not None:
print("Caching cluster centers")
torch.save(self.c_centers,
f"{self.cache_dir}/c_centers.pt")
def fit_and_generate(self,
train_descs: Union[np.ndarray, torch.Tensor]) \
-> torch.Tensor:
"""
Given a batch of descriptors over images, `fit` the VLAD
and generate the global descriptors for the training
images. Use only when there are a fixed number of
descriptors in each image.
Parameters:
- train_descs: Training image descriptors of shape
[num_imgs, num_descs, desc_dim]. There are
'num_imgs' images, each image has
'num_descs' descriptors and each
descriptor is 'desc_dim' dimensional.
Returns:
- train_vlads: The VLAD vectors of all training images.
Shape: [num_imgs, num_clusters*desc_dim]
"""
# Generate vocabulary
all_descs = ein.rearrange(train_descs, "n k d -> (n k) d")
self.fit(all_descs)
# For each image, stack VLAD
return torch.stack([self.generate(tr) for tr in train_descs])
def generate(self, query_descs: Union[np.ndarray, torch.Tensor],
cache_id: Union[str, None]=None) -> torch.Tensor:
"""
Given the query descriptors, generate a VLAD vector. Call
`fit` before using this method. Use this for only single
images and with descriptors stacked. Use function
`generate_multi` for multiple images.
Parameters:
- query_descs: Query descriptors of shape [n_q, desc_dim]
where 'n_q' is number of 'desc_dim'
dimensional descriptors in a query image.
- cache_id: If not None, then the VLAD vector is
constructed using the residual and labels
from this file.
Returns:
- n_vlas: Normalized VLAD: [num_clusters*desc_dim]
"""
residuals = self.generate_res_vec(query_descs, cache_id)
# Un-normalized VLAD vector: [c*d,]
un_vlad = torch.zeros(self.num_clusters * self.desc_dim)
if self.vlad_mode == 'hard':
# Get labels for assignment of descriptors
if cache_id is not None and self.can_use_cache_vlad() \
and os.path.isfile(
f"{self.cache_dir}/{cache_id}_l.pt"):
labels = torch.load(
f"{self.cache_dir}/{cache_id}_l.pt")
else:
labels = self.kmeans.predict(query_descs) # [q]
if cache_id is not None and self.can_use_cache_vlad():
torch.save(labels,
f"{self.cache_dir}/{cache_id}_l.pt")
# Create VLAD from residuals and labels
used_clusters = set(labels.numpy())
for k in used_clusters:
# Sum of residuals for the descriptors in the cluster
# Shape:[q, c, d] -> [q', d] -> [d]
cd_sum = residuals[labels==k,k].sum(dim=0)
if self.intra_norm:
cd_sum = F.normalize(cd_sum, dim=0)
un_vlad[k*self.desc_dim:(k+1)*self.desc_dim] = cd_sum
else: # Soft cluster assignment
# Cosine similarity: 1 = close, -1 = away
if cache_id is not None and self.can_use_cache_vlad() \
and os.path.isfile(
f"{self.cache_dir}/{cache_id}_s.pt"):
soft_assign = torch.load(
f"{self.cache_dir}/{cache_id}_s.pt")
else:
cos_sims = F.cosine_similarity( # [q, c]
ein.rearrange(query_descs, "q d -> q 1 d"),
ein.rearrange(self.c_centers, "c d -> 1 c d"),
dim=2)
soft_assign = F.softmax(self.soft_temp*cos_sims,
dim=1)
if cache_id is not None and self.can_use_cache_vlad():
torch.save(soft_assign,
f"{self.cache_dir}/{cache_id}_s.pt")
# Soft assignment scores (as probabilities): [q, c]
for k in range(0, self.num_clusters):
w = ein.rearrange(soft_assign[:, k], "q -> q 1 1")
# Sum of residuals for all descriptors (for cluster k)
cd_sum = ein.rearrange(w * residuals,
"q c d -> (q c) d").sum(dim=0) # [d]
if self.intra_norm:
cd_sum = F.normalize(cd_sum, dim=0)
un_vlad[k*self.desc_dim:(k+1)*self.desc_dim] = cd_sum
# Normalize the VLAD vector
n_vlad = F.normalize(un_vlad, dim=0)
return n_vlad
def generate_multi(self,
multi_query: Union[np.ndarray, torch.Tensor, list],
cache_ids: Union[List[str], None]=None) \
-> Union[torch.Tensor, list]:
"""
Given query descriptors from multiple images, generate
the VLAD for them.
Parameters:
- multi_query: Descriptors of shape [n_imgs, n_kpts, d]
There are 'n_imgs' and each image has
'n_kpts' keypoints, with 'd' dimensional
descriptor each. If a List (can then have
different number of keypoints in each
image), then the result is also a list.
- cache_ids: Cache IDs for the VLAD vectors. If None,
then no caching is done (stored or
retrieved). If a list, then the length
should be 'n_imgs' (one per image).
Returns:
- multi_res: VLAD descriptors for the queries
"""
if cache_ids is None:
cache_ids = [None] * len(multi_query)
res = [self.generate(q, c) \
for (q, c) in zip(multi_query, cache_ids)]
try: # Most likely pytorch
res = torch.stack(res)
except TypeError:
try: # Otherwise numpy
res = np.stack(res)
except TypeError:
pass # Let it remain as a list
return res
def generate_res_vec(self,
query_descs: Union[np.ndarray, torch.Tensor],
cache_id: Union[str, None]=None) -> torch.Tensor:
"""
Given the query descriptors, generate a VLAD vector. Call
`fit` before using this method. Use this for only single
images and with descriptors stacked. Use function
`generate_multi` for multiple images.
Parameters:
- query_descs: Query descriptors of shape [n_q, desc_dim]
where 'n_q' is number of 'desc_dim'
dimensional descriptors in a query image.
- cache_id: If not None, then the VLAD vector is
constructed using the residual and labels
from this file.
Returns:
- residuals: Residual vector: shape [n_q, n_c, d]
"""
assert self.kmeans is not None
assert self.c_centers is not None
# Compute residuals (all query to cluster): [q, c, d]
if cache_id is not None and self.can_use_cache_vlad() and \
os.path.isfile(f"{self.cache_dir}/{cache_id}_r.pt"):
residuals = torch.load(
f"{self.cache_dir}/{cache_id}_r.pt")
else:
if type(query_descs) == np.ndarray:
query_descs = torch.from_numpy(query_descs)\
.to(torch.float32)
if self.norm_descs:
query_descs = F.normalize(query_descs)
residuals = ein.rearrange(query_descs, "q d -> q 1 d") \
- ein.rearrange(self.c_centers, "c d -> 1 c d")
if cache_id is not None and self.can_use_cache_vlad():
cid_dir = f"{self.cache_dir}/"\
f"{os.path.split(cache_id)[0]}"
if not os.path.isdir(cid_dir):
os.makedirs(cid_dir)
print(f"Created directory: {cid_dir}")
torch.save(residuals,
f"{self.cache_dir}/{cache_id}_r.pt")
# print("residuals",residuals.shape)
return residuals
def generate_multi_res_vec(self,
multi_query: Union[np.ndarray, torch.Tensor, list],
cache_ids: Union[List[str], None]=None) \
-> Union[torch.Tensor, list]:
"""
Given query descriptors from multiple images, generate
the VLAD for them.
Parameters:
- multi_query: Descriptors of shape [n_imgs, n_kpts, d]
There are 'n_imgs' and each image has
'n_kpts' keypoints, with 'd' dimensional
descriptor each. If a List (can then have
different number of keypoints in each
image), then the result is also a list.
- cache_ids: Cache IDs for the VLAD vectors. If None,
then no caching is done (stored or
retrieved). If a list, then the length
should be 'n_imgs' (one per image).
Returns:
- multi_res: VLAD descriptors for the queries
"""
if cache_ids is None:
cache_ids = [None] * len(multi_query)
res = [self.generate_res_vec(q, c) \
for (q, c) in zip(multi_query, cache_ids)]
try: # Most likely pytorch
res = torch.stack(res)
except TypeError:
try: # Otherwise numpy
res = np.stack(res)
except TypeError:
pass # Let it remain as a list
return res
|