Spaces:
Runtime error
Runtime error
File size: 22,118 Bytes
61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 1c2f636 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af 476e478 61364af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
# Show VLAD clustering for set of example images or a user image
"""
User input:
- Domain: Indoor, Aerial, or Urban
- Image: Image to be clustered
- Cluster numbers (to visualize)
- Pixel coordinates (to pick further clusters)
- A unique cache ID (to store the DINO forward passes)
There are example images for each domain.
Output:
- All images with cluster assignments
Some Gradio links:
- Controlling layout
- https://www.gradio.app/guides/quickstart#blocks-more-flexibility-and-control
- Data state (persistence)
- https://www.gradio.app/guides/interface-state
- https://www.gradio.app/docs/state
- Layout control
- https://www.gradio.app/guides/controlling-layout
- https://www.gradio.app/guides/blocks-and-event-listeners
"""
# A markdown string shown at the top of the app
header_markdown = """
# AnyLoc Demo
\| [Website](https://anyloc.github.io/) \| \
[GitHub](https://github.com/AnyLoc/AnyLoc) \| \
[YouTube](https://youtu.be/ITo8rMInatk) \|
This space contains a collection of demos for AnyLoc. Each demo is a \
self-contained application in the tabs below. The following \
applications are included
1. **GeM t-SNE Projection**: Upload a set of images and see where \
they land on a t-SNE projection of GeM descriptors from many \
domains. This can be used to guide domain selection (from a few \
representative images).
2. **Cluster Visualization**: This visualizes the VLAD cluster \
assignments for the patch descriptors. You need to select the \
domain for loading VLAD cluster centers (vocabulary).
We do **not** save any images uploaded to the demo. Some errors may \
leave a log. We do not collect any information about the user.
🥳 Thanks to HuggingFace for providing a free GPU for this demo.
"""
# %%
import os
import gradio as gr
import numpy as np
import cv2 as cv
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms as tvf
from torchvision.transforms import functional as T
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import distinctipy as dipy
import joblib
from typing import Literal, List
import gradio as gr
import time
import glob
import shutil
import matplotlib.pyplot as plt
from copy import deepcopy
# DINOv2 imports
from utilities import DinoV2ExtractFeatures
from utilities import VLAD
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# %%
# Configurations
T1 = Literal["query", "key", "value", "token"]
T2 = Literal["aerial", "indoor", "urban"]
DOMAINS = ["aerial", "indoor", "urban"]
T3 = Literal["dinov2_vits14", "dinov2_vitb14", "dinov2_vitl14",
"dinov2_vitg14"]
_ex = lambda x: os.path.realpath(os.path.expanduser(x))
dino_model: T3 = "dinov2_vitg14"
desc_layer: int = 31
desc_facet: T1 = "value"
num_c: int = 8
cache_dir: str = _ex("./cache") # Directory containing program cache
max_img_size: int = 1024 # Image resolution (max dim/size)
max_num_imgs: int = 16 # Max number of images to upload
share: bool = False # Share application using .gradio link
# Verify inputs
assert os.path.isdir(cache_dir), "Cache directory not found"
# %%
# Model and transforms
print("Loading DINO model")
# extractor = None # FIXME: For quick testing only
extractor = DinoV2ExtractFeatures(dino_model, desc_layer, desc_facet,
device=device)
print("DINO model loaded")
# VLAD path (directory)
ext_s = f"{dino_model}/l{desc_layer}_{desc_facet}_c{num_c}"
vc_dir = os.path.join(cache_dir, "vocabulary", ext_s)
assert os.path.isdir(vc_dir), f"VLAD directory: {vc_dir} not found"
# GeM path (cache)
gem_cf = os.path.join(cache_dir, "gem_cache", "result_dino_v2.gz")
assert os.path.isfile(gem_cf), f"GeM cache: {gem_cf} not found"
gem_cache = joblib.load(gem_cf)
assert gem_cache["model"]["type"] == dino_model
assert gem_cache["model"]["layer"] == desc_layer
assert gem_cache["model"]["facet"] == desc_facet
fig = plt.figure() # Main figure
fig.clear()
# Base image transformations
base_tf = tvf.Compose([
tvf.ToTensor(),
tvf.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# %%
# Get VLAD object
def get_vlad_clusters(domain, pr = gr.Progress()):
dm: T2 = str(domain).lower()
assert dm in DOMAINS, "Invalid domain"
# Load VLAD cluster centers
pr(0, desc="Loading VLAD clusters")
c_centers_file = os.path.join(vc_dir, dm, "c_centers.pt")
if not os.path.isfile(c_centers_file):
return f"Cluster centers not found for: {domain}", None
c_centers = torch.load(c_centers_file)
pr(0.5)
num_c = c_centers.shape[0]
desc_dim = c_centers.shape[1]
vlad = VLAD(num_c, desc_dim,
cache_dir=os.path.dirname(c_centers_file))
vlad.fit(None) # Restore the cache
pr(1)
return f"VLAD clusters loaded for: {domain}", vlad
# %%
# Get VLAD descriptors
@torch.no_grad()
def get_descs(imgs_batch, pr = gr.Progress()):
imgs_batch: List[np.ndarray] = imgs_batch
pr(0, desc="Extracting descriptors")
patch_descs = []
for i, img in enumerate(imgs_batch):
if img is None:
print(f"Image {i+1} is None")
continue
# Convert to PIL image
pil_img = Image.fromarray(img)
img_pt = base_tf(pil_img).to(device)
if max(img_pt.shape[-2:]) > max_img_size:
print(f"Image {i+1}: {img_pt.shape[-2:]}, outside")
c, h, w = img_pt.shape
# Maintain aspect ratio
if h == max(img_pt.shape[-2:]):
w = int(w * max_img_size / h)
h = max_img_size
else:
h = int(h * max_img_size / w)
w = max_img_size
img_pt = T.resize(img_pt, (h, w),
interpolation=T.InterpolationMode.BICUBIC)
pil_img = pil_img.resize((w, h)) # Backup
# Make image patchable
c, h, w = img_pt.shape
h_new, w_new = (h // 14) * 14, (w // 14) * 14
img_pt = tvf.CenterCrop((h_new, w_new))(img_pt)[None, ...]
# Extract descriptors
ret = extractor(img_pt).cpu() # [1, n_p, d]
patch_descs.append({"img": pil_img, "descs": ret})
pr((i+1) / len(imgs_batch))
pr(1.0)
return patch_descs, \
f"Descriptors extracted for {len(imgs_batch)} images"
# %%
# Assign VLAD clusters (descriptor assignment)
def assign_vlad(patch_descs, vlad, pr = gr.Progress()):
vlad: VLAD = vlad
img_patch_descs = [pd["descs"] for pd in patch_descs]
pr(0, desc="Assigning VLAD clusters")
desc_assignments = [] # List[Tensor;shape=('h', 'w');int]
for i, qu_desc in enumerate(img_patch_descs):
# Residual vectors; 'n' could differ (based on img sizes)
res = vlad.generate_res_vec(qu_desc[0]) # ['n', n_c, d]
img = patch_descs[i]["img"]
h, w, c = np.array(img).shape
h_p, w_p = h // 14, w // 14
h_new, w_new = h_p * 14, w_p * 14
assert h_p * w_p == res.shape[0], "Residual incorrect!"
# Descriptor assignments
da = res.abs().sum(dim=2).argmin(dim=1).reshape(h_p, w_p)
da = F.interpolate(da[None, None, ...].to(float),
(h_new, w_new), mode="nearest")[0, 0].to(da.dtype)
desc_assignments.append(da)
pr((i+1) / len(img_patch_descs))
pr(1.0)
return desc_assignments, "VLAD clusters assigned"
# %%
# Cluster assignments to images
def get_ca_images(desc_assignments, patch_descs, alpha,
pr = gr.Progress()):
if desc_assignments is None or len(desc_assignments) == 0:
if not 0 <= alpha <= 1:
return None, f"Invalid alpha value: {alpha} (should be "\
"between 0 and 1)"
return None, "First load the images"
c_colors = dipy.get_colors(num_c, rng=928,
colorblind_type="Deuteranomaly")
np_colors = (np.array(c_colors) * 255).astype(np.uint8)
# Get images with clusters
pil_imgs = [pd["img"] for pd in patch_descs]
res_imgs = [] # List[PIL.Image]
pr(0, desc="Generating cluster assignment images")
for i, pil_img in enumerate(pil_imgs):
# Descriptor assignment image: [h, w, 3]
da: torch.Tensor = desc_assignments[i] # ['h', 'w']
da_img = np.zeros((*da.shape, 3), dtype=np.uint8)
for c in range(num_c):
da_img[da == c] = np_colors[c]
# Background image: [h, w, 3]
img_np = np.array(pil_img, dtype=np.uint8)
h, w, c = np.array(img_np).shape
h_p, w_p = (h // 14), (w // 14)
h_new, w_new = h_p * 14, w_p * 14
img_np = F.interpolate(torch.tensor(img_np)\
.permute(2, 0, 1)[None, ...], (h_new, w_new),
mode='nearest')[0].permute(1, 2, 0).numpy()
res_img = cv.addWeighted(img_np, 1 - alpha, da_img, alpha, 0.)
res_imgs.append(Image.fromarray(res_img))
pr((i+1) / len(pil_imgs))
pr(1.0)
return res_imgs, "Cluster assignment images generated"
# %%
# Get GeM descriptors from cache
def get_gem_descs_cache(use_d, pr = gr.Progress()):
use_d: List[str] = use_d
if len(use_d) == 0:
return "Select at least one domain", None
else:
use_d = [d.lower() for d in use_d]
indoor_datasets = ["baidu_datasets", "gardens", "17places"]
urban_datasets = ["pitts30k", "st_lucia", "Oxford"]
aerial_datasets = ["Tartan_GNSS_test_rotated",
"Tartan_GNSS_test_notrotated", "VPAir"]
pr(0, desc="Loading GeM descriptors from cache")
gem_descs = {
"labels": [],
"descs": [],
}
for i, ds in enumerate(gem_cache["data"]):
# GeM descriptors from data: n_desc, desc_dim
d: np.ndarray = gem_cache["data"][ds]["descriptors"]
if ds in indoor_datasets and "indoor" in use_d:
gem_descs["labels"].extend(["indoor"] * d.shape[0])
elif ds in urban_datasets and "urban" in use_d:
gem_descs["labels"].extend(["urban"] * d.shape[0])
elif ds in aerial_datasets and "aerial" in use_d:
gem_descs["labels"].extend(["aerial"] * d.shape[0])
else:
continue
gem_descs["descs"].append(d)
pr((i+1) / len(gem_cache["data"]))
gem_descs["descs"] = np.concatenate(gem_descs["descs"], axis=0)
pr(1.0)
return "GeM descriptors loaded from cache", gem_descs
# %%
# Get GeM pooled features of the uploaded images
def get_add_gem_descs(imgs_batch, gem_descs, pr = gr.Progress()):
imgs_batch: List[np.ndarray] = imgs_batch
gem_descs: dict = gem_descs
pr(0, desc="Extracting GeM descriptors")
num_imgs_extracted = 0
for i, img in enumerate(imgs_batch):
if img is None:
print(f"Image {i+1} is None")
continue
# Convert to PIL image
pil_img = Image.fromarray(img)
img_pt = base_tf(pil_img).to(device)
if max(img_pt.shape[-2:]) > max_img_size:
print(f"Image {i+1}: {img_pt.shape[-2:]}, outside")
c, h, w = img_pt.shape
# Maintain aspect ratio
if h == max(img_pt.shape[-2:]):
w = int(w * max_img_size / h)
h = max_img_size
else:
h = int(h * max_img_size / w)
w = max_img_size
img_pt = T.resize(img_pt, (h, w),
interpolation=T.InterpolationMode.BICUBIC)
pil_img = pil_img.resize((w, h)) # Backup
# Make image patchable
c, h, w = img_pt.shape
h_new, w_new = (h // 14) * 14, (w // 14) * 14
img_pt = tvf.CenterCrop((h_new, w_new))(img_pt)[None, ...]
# Extract descriptors
ret = extractor(img_pt).cpu() # [1, n_p, d]
# Get the GeM pooled descriptor
x = torch.mean(ret**3, dim=-2)
g_res = x.to(torch.complex64) ** (1/3)
g_res = torch.abs(g_res) * torch.sign(x) # [1, d]
g_res = g_res.numpy()
# Add to state
gem_descs["labels"].append(f"Image{i+1}")
gem_descs["descs"] = np.concatenate([gem_descs["descs"],
g_res])
num_imgs_extracted += 1
pr((i+1) / len(imgs_batch))
pr(1.0)
gem_descs["num_uimgs"] = num_imgs_extracted
return gem_descs, "GeM descriptors extracted"
# %%
# Apply tSNE to the GeM descriptors
def get_tsne_fm_gem(gem_descs, pr = gr.Progress()):
pr(0, desc="Applying tSNE to GeM descriptors")
desc_all: np.ndarray = gem_descs["descs"] # [n, d_dim]
labels_all: List[str] = gem_descs["labels"] # [n]
# tSNE projection
tsne = TSNE(n_components=2, random_state=30, perplexity=50,
learning_rate=200, init='random')
desc_2d = tsne.fit_transform(desc_all)
# Result
tsne_pts = {
"labels": labels_all,
"pts": desc_2d,
"num_uimgs": gem_descs["num_uimgs"], # Number of user imgs
}
pr(1.0)
return tsne_pts, "tSNE projection done"
# %%
# Plot tSNE to matplotlib figure
def plot_tsne(tsne_pts):
colors = {
"aerial": (80/255, 0/255, 80/255),
"indoor": ( 0/255, 76/255, 204/255),
"urban": ( 0/255, 204/255, 0/255),
}
ni = int(tsne_pts["num_uimgs"])
# Custom colors for user images
ucs = dipy.get_colors(ni, exclude_colors=list(colors.values())\
.extend([(0, 0, 0), (1, 1, 1)]),
colorblind_type="Deuteranomaly")
for i in range(ni):
colors[f"Image{i+1}"] = ucs[i]
fig.clear()
gs = fig.add_gridspec(1, 1)
ax = fig.add_subplot(gs[0, 0])
ax.set_title("tSNE Projection")
for i, domain in enumerate(list(colors.keys())):
pts = tsne_pts["pts"][np.array(tsne_pts["labels"]) == domain]
if domain.startswith("Image"):
m = "x"
else:
m = "o"
ax.scatter(pts[:, 0], pts[:, 1], label=domain, marker=m,
color=colors[domain])
# Put legend at the bottom of axis
ax.legend()
ax.set_xticks([])
ax.set_yticks([])
fig.set_tight_layout(True)
# fig.set_tight_layout(True)
return fig, "tSNE plot created"
# %%
print("Interface build started")
# Tab for VLAD cluster assignment visualization
def tab_cluster_viz():
d_vals = [k.title() for k in DOMAINS]
domain = gr.Radio(d_vals, value=d_vals[0], label="Domain",
info="The domain of images (for loading VLAD vocabulary)")
nimg_s = gr.Number(2, label="How many images?", precision=0,
info=f"Between '1' and '{max_num_imgs}' images. Press "\
"enter/return to register")
with gr.Row(): # Dynamic row (images in columns)
imgs = [gr.Image(label=f"Image {i+1}", visible=True) \
for i in range(int(nimg_s.value))] + \
[gr.Image(visible=False) \
for _ in range(max_num_imgs - int(nimg_s.value))]
for i, img in enumerate(imgs): # Set image as "input"
img.change(lambda _: None, img)
with gr.Row(): # Dynamic row of output (cluster) images
imgs2 = [gr.Image(label=f"VLAD Clusters {i+1}",
visible=False) for i in range(max_num_imgs)]
nimg_s.submit(var_num_img, nimg_s, imgs)
blend_alpha = gr.Number(0.4, label="Blending alpha",
info="Weight for cluster centers (between 0 and 1). "\
"Higher (close to 1) means greater emphasis on cluster "\
"visibility. Lower (closer to 0) will show the "\
"underlying image more. "\
"Press enter/return to register")
bttn1 = gr.Button("Click Me!") # Cluster assignment
gr.Markdown("### Status strings")
out_msg1 = gr.Markdown("Select domain and upload images")
out_msg2 = gr.Markdown("For descriptor extraction")
out_msg3 = gr.Markdown("Followed by VLAD assignment")
out_msg4 = gr.Markdown("Followed by cluster images")
# ---- Utility functions ----
# A wrapper to batch the images
def batch_images(data):
sv = int(data[nimg_s])
images: List[np.ndarray] = [data[imgs[k]] \
for k in range(sv)]
return images
# A wrapper to unbatch images (and pad to max)
def unbatch_images(imgs_batch, nimg):
ret = [gr.Image.update(visible=False) \
for _ in range(max_num_imgs)]
if imgs_batch is None or len(imgs_batch) == 0:
return ret
for i in range(nimg): # nimg only to match input layout
if i < len(imgs_batch):
img_np = np.array(imgs_batch[i])
else:
img_np = None
ret[i] = gr.Image.update(img_np, visible=True)
return ret
# ---- Examples ----
# Two images from each domain
gr.Examples(
[
["Aerial", 2,
"ex_aerial_nardo-air_db-42.png",
"ex_aerial_nardo-air_qu-42.png",],
["Indoor", 2,
"ex_indoor_17places_db-75.jpg",
"ex_indoor_17places_qu-75.jpg"],
["Urban", 2,
"ex_urban_oxford_db-75.png",
"ex_urban_oxford_qu-75.png"],],
[domain, nimg_s, *imgs],
)
# ---- Main pipeline ----
# Get the VLAD cluster assignment images on click
bttn1.click(get_vlad_clusters, domain, [out_msg1, vlad])\
.then(batch_images, {nimg_s, *imgs, imgs_batch}, imgs_batch)\
.then(get_descs, imgs_batch, [patch_descs, out_msg2])\
.then(assign_vlad, [patch_descs, vlad],
[desc_assignments, out_msg3])\
.then(get_ca_images,
[desc_assignments, patch_descs, blend_alpha],
[imgs_batch, out_msg4])\
.then(unbatch_images, [imgs_batch, nimg_s], imgs2)
# If the blending changes now, update the cluster images only
blend_alpha.submit(get_ca_images,
[desc_assignments, patch_descs, blend_alpha],
[imgs_batch, out_msg4])\
.then(unbatch_images, [imgs_batch, nimg_s], imgs2)
# Tab for GeM t-SNE projection plot
def tab_gem_tsne():
d_vals = [k.title() for k in DOMAINS]
dms = gr.CheckboxGroup(d_vals, value=d_vals, label="Domains",
info="The domains to use for the t-SNE projection")
nimg_s = gr.Number(2, label="How many images?", precision=0,
info=f"Between '1' and '{max_num_imgs}' images. Press "\
"enter/return to register")
with gr.Row(): # Dynamic row (images in columns)
imgs = [gr.Image(label=f"Image {i+1}", visible=True) \
for i in range(int(nimg_s.value))] + \
[gr.Image(visible=False) \
for _ in range(max_num_imgs - int(nimg_s.value))]
for i, img in enumerate(imgs): # Set image as "input"
img.change(lambda _: None, img)
nimg_s.submit(var_num_img, nimg_s, imgs)
tsne_plot = gr.Plot(None, label="tSNE Plot")
out_msg1 = gr.Markdown("Select domains")
out_msg2 = gr.Markdown("Upload images")
out_msg3 = gr.Markdown("Wait for tSNE plots")
# A wrapper to batch the images
def batch_images(data):
sv = int(data[nimg_s])
# images: List[np.ndarray] = [data[imgs[k]] \
# for k in range(sv)]
images: List[np.ndarray] = []
for k in range(sv):
img = data[imgs[k]]
if img is None:
return None, f"Image {k+1} is None!"
images.append(img)
return images, "Images batched"
bttn1 = gr.Button("Click Me!")
# ---- Main pipeline ----
# Get the tSNE plot
bttn1.click(get_gem_descs_cache, dms, [out_msg1, gem_descs])\
.then(batch_images, {nimg_s, *imgs, imgs_batch},
[imgs_batch, out_msg2])\
.then(get_add_gem_descs, [imgs_batch, gem_descs],
[gem_descs, out_msg2])\
.then(get_tsne_fm_gem, gem_descs, [tsne_pts, out_msg3])\
.then(plot_tsne, tsne_pts, [tsne_plot, out_msg3])
# Build the interface
with gr.Blocks() as demo:
# Main header
gr.Markdown(header_markdown)
# ---- Helper functions ----
# Variable number of input images (show/hide UI image array)
def var_num_img(s):
n = int(s) # Slider (string) value as int
assert 1 <= n <= max_num_imgs, f"Invalid num of images: {n}!"
return [gr.Image.update(label=f"Image {i+1}", visible=True) \
for i in range(n)] \
+ [gr.Image.update(visible=False) \
for _ in range(max_num_imgs - n)]
# ---- State declarations ----
vlad = gr.State() # VLAD object
desc_assignments = gr.State() # Cluster assignments
imgs_batch = gr.State() # Images as batch
patch_descs = gr.State() # Patch descriptors
gem_descs = gr.State() # GeM descriptors (of each state)
tsne_pts = gr.State() # tSNE points
# ---- All UI elements ----
with gr.Tab("GeM t-SNE Projection"):
gr.Markdown(
"""
## GeM t-SNE Projection
Select the domains (toggle visibility) for t-SNE plot. \
Enter the number of images to upload and upload images. \
Then click the button to get the t-SNE plot.
""")
tab_gem_tsne()
with gr.Tab("Cluster Visualization"):
gr.Markdown(
"""
## Cluster Visualizations
Select the domain for the images (all should be from the \
same domain). Enter the number of images to upload. \
Upload the images. Then click the button to get the \
cluster assignment images.
You can also directly click on one of the examples (at \
the bottom) to load the data and then click the button \
to get the cluster assignment images.
""")
tab_cluster_viz()
print("Interface build completed")
# %%
# Deploy application
demo.queue().launch(share=share)
print("Application deployment ended, exiting...")
|