File size: 5,513 Bytes
3adba3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr
from random import randint
from all_models import models



def load_fn(models):
    global models_load
    models_load = {}
    
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr.load(f'models/{model}')
            except Exception as error:
                m = gr.Interface(lambda txt: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)


num_models = 1
default_models = models[:num_models]



def extend_choices(choices):
    return choices + (num_models - len(choices)) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices)
    return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]

    
def gen_fn(model_str, prompt):
    if model_str == 'NA':
        return None
    noise = str('') #str(randint(0, 99999999999))
    return models_load[model_str](f'{prompt} {noise}')

def gen_fnsix(model_str, prompt):
    if model_str == 'NA':
        return None
    noisesix = str(randint(1941, 2023)) #str(randint(0, 99999999999))
    return models_load[model_str](f'{prompt} {noisesix}')
with gr.Blocks() as demo:
    gr.HTML(
    """
        <div>
        <p> <center><img src="https://einfachalex.net/wp-content/uploads/2024/02/696f61d7a31edd36aa11414db3ba2854.png" style="height:128px; width:482px; margin-top: -22px; margin-bottom: -44px;" span title="Free ai art image generator Printing Press"></center>
        </p>
    """
)    
    with gr.Tab('One Image'):
        model_choice = gr.Dropdown(models, label = 'Choose a model from the 697 available!', value = models[0], filterable = False)
        txt_input = gr.Textbox(label = 'Your prompt:')
        
        max_imagesone = 1
        num_imagesone = gr.Slider(1, max_imagesone, value = max_imagesone, step = 1, label = 'Nobody gets to see this label so I can put here whatever I want!', visible = False)
        
        gen_button = gr.Button('Generate')
        stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
        gen_button.click(lambda s: gr.update(interactive = True), None, stop_button)
        
        with gr.Row():
            output = [gr.Image(label = '') for _ in range(max_imagesone)]

        for i, o in enumerate(output):
            img_in = gr.Number(i, visible = False)
            num_imagesone.change(lambda i, n: gr.update(visible = (i < n)), [img_in, num_imagesone], o, show_progress = False)
            gen_event = gen_button.click(lambda i, n, m, t: gen_fn(m, t) if (i < n) else None, [img_in, num_imagesone, model_choice, txt_input], o)
            stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, <a href="https://huggingface.co/spaces/Yntec/Diffusion60XX">Diffusion60XX</a> and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>!
        </p>
    """
)
    with gr.Tab('Up To Six'):
        model_choice2 = gr.Dropdown(models, label = 'Choose a model from the 697 available!', value = models[0], filterable = False)
        txt_input2 = gr.Textbox(label = 'Your prompt:')
        
        max_images = 6
        num_images = gr.Slider(1, max_images, value = max_images, step = 1, label = 'Number of images (if you want less than 6 decrease them slowly until they match the boxes below)')
        
        gen_button2 = gr.Button('Generate up to 6 images in up to 3 minutes total')
        stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False)
        gen_button2.click(lambda s: gr.update(interactive = True), None, stop_button2)
        gr.HTML(
        """
            <div style="text-align: center; max-width: 1200px; margin: 0 auto;">
              <div>
                <body>
                <div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images (they generate in a random order).</p>
                </div>
                </body>
              </div>
            </div>
        """
               )
        with gr.Column():
            output2 = [gr.Image(label = '') for _ in range(max_images)]

        for i, o in enumerate(output2):
            img_i = gr.Number(i, visible = False)
            num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, show_progress = False)
            gen_event2 = gen_button2.click(lambda i, n, m, t: gen_fnsix(m, t) if (i < n) else None, [img_i, num_images, model_choice2, txt_input2], o)
            stop_button2.click(lambda s: gr.update(interactive = False), None, stop_button2, cancels = [gen_event2])
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, <a href="https://huggingface.co/spaces/Yntec/Diffusion60XX">Diffusion60XX</a> and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>!
        </p>
    """
)

demo.queue(concurrency_count = 200)                        
demo.launch()