File size: 3,295 Bytes
83cc343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
 
 
 
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
b8c6cbb
83cc343
 
 
 
 
 
 
 
b8c6cbb
83cc343
 
 
 
 
b8c6cbb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr

title = "fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit"

description = "Gradio Demo for fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.06912' target='_blank'>fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit</a> | <a href='https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis' target='_blank'>Github Repo</a></p>"

examples = [
    ["Hello this is a test run","fastspeech2-en-200_speaker-cv4"],
    ["Hello, this is a test run.","tts_transformer-en-200_speaker-cv4"],
    ["Bonjour, ceci est un test.","tts_transformer-fr-cv7_css10"],
    ["BЗдравствуйте, это пробный запуск.","tts_transformer-ru-cv7_css10"],
    ["Merhaba, bu bir deneme çalışmasıdır.","tts_transformer-tr-cv7"],
    ["Xin chào, đây là một cuộc chạy thử nghiệm.","tts_transformer-vi-cv7"],
    ["مرحبًا ، هذا اختبار تشغيل.","tts_transformer-ar-cv7"],
    ["Hola, esta es una prueba.","tts_transformer-es-css10"]
]

io1 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-es_en-multi_domain")

io2 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-ru_en-multi_domain")

io3 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_ru-multi_domain")

io4 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_es-multi_domain")

io5 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_zh-multi_domain")

io6 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-fr_en-multi_domain")

io7 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_ar-multi_domain")

io8 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_tr-multi_domain")


    
def inference(text,model):
   if model == "xm_transformer_600m-es_en-multi_domain":
        outtext = io1(text)
   elif model == "xm_transformer_600m-ru_en-multi_domain":
        outtext = io2(text)
   elif model == "xm_transformer_600m-en_ru-multi_domain":
        outtext = io3(text)
   elif model == "xm_transformer_600m-en_es-multi_domain":
        outtext = io4(text)
   elif model == "xm_transformer_600m-en_zh-multi_domain":
        outtext = io5(text)
   elif model == "xm_transformer_600m-fr_en-multi_domain":
        outtext = io6(text)
   elif model == "xm_transformer_600m-en_ar-multi_domain":
        outtext = io7(text)
   else:
        outtext = io8(text)
   return outtext 


gr.Interface(
    inference, 
    [gr.inputs.Audio(label="Input"),gr.inputs.Dropdown(choices=["xm_transformer_600m-es_en-multi_domain","xm_transformer_600m-ru_en-multi_domain","xm_transformer_600m-en_ru-multi_domain","xm_transformer_600m-en_es-multi_domain","xm_transformer_600m-en_zh-multi_domain","xm_transformer_600m-fr_en-multi_domain","xm_transformer_600m-en_ar-multi_domain","facebook/xm_transformer_600m-en_tr-multi_domain"], type="value", default="xm_transformer_600m-es_en-multi_domain", label="model")
],
    gr.outputs.Audio(label="Output"),
    examples=examples,
    article=article,
    title=title,
    description=description).launch(enable_queue=True)