File size: 1,389 Bytes
ee668ff
ca317b2
 
ee668ff
ca317b2
ee668ff
ca317b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee668ff
 
ca317b2
 
 
 
 
 
 
 
 
 
 
ee668ff
505f42a
1484047
ee668ff
ca317b2
 
ee668ff
ca317b2
 
 
 
 
 
 
 
ee668ff
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
from llava_llama3.serve.cli import chat_llava
from llava_llama3.model.builder import load_pretrained_model
from PIL import Image
import torch

model_path = "TheFinAI/FinLLaVA"
device = "cuda"
conv_mode = "llama_3"
temperature = 0
max_new_tokens = 512
load_8bit = False
load_4bit = False

tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
    model_path, 
    None, 
    'llava_llama3', 
    load_8bit, 
    load_4bit, 
    device=device
)

def predict(image, text):
    output = chat_llava(
        args=None,
        image_file=image,
        text=text,
        tokenizer=tokenizer,
        model=llava_model,
        image_processor=image_processor,
        context_len=context_len
    )
    return output


chatbot = gr.Chatbot(scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)

with gr.Blocks(fill_height=True) as demo:
    gr.ChatInterface(
        fn=predict,
        title="FinLLaVA",
        examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
                  {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
        stop_btn="Stop Generation",
        multimodal=True,
        textbox=chat_input,
        chatbot=chatbot,
    )

demo.queue(api_open=False)
demo.launch(show_api=False, share=False)