Spaces:
Running
Running
File size: 6,172 Bytes
d5d20be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import numpy as np
from .box_utils import nms, calibrate_box, get_image_boxes, convert_to_square
from .first_stage import run_first_stage
import onnxruntime
import os
from os.path import exists
import requests
def download_img(img_url, base_dir):
print("Downloading Onnx Model in:",img_url)
r = requests.get(img_url, stream=True)
filename = img_url.split("/")[-1]
# print(r.status_code) # 返回状态码
if r.status_code == 200:
open(f'{base_dir}/{filename}', 'wb').write(r.content) # 将内容写入图片
print(f"Download Finshed -- {filename}")
del r
def detect_faces(image, min_face_size=20.0, thresholds=None, nms_thresholds=None):
"""
Arguments:
image: an instance of PIL.Image.
min_face_size: a float number.
thresholds: a list of length 3.
nms_thresholds: a list of length 3.
Returns:
two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
bounding boxes and facial landmarks.
"""
if nms_thresholds is None:
nms_thresholds = [0.7, 0.7, 0.7]
if thresholds is None:
thresholds = [0.6, 0.7, 0.8]
base_url = "https://linimages.oss-cn-beijing.aliyuncs.com/"
onnx_filedirs = ["pnet.onnx", "rnet.onnx", "onet.onnx"]
# LOAD MODELS
basedir = os.path.dirname(os.path.realpath(__file__)).split("detector.py")[0]
for onnx_filedir in onnx_filedirs:
if not exists(f"{basedir}/weights"):
os.mkdir(f"{basedir}/weights")
if not exists(f"{basedir}/weights/{onnx_filedir}"):
# download onnx model
download_img(img_url=base_url+onnx_filedir, base_dir=f"{basedir}/weights")
pnet = onnxruntime.InferenceSession(f"{basedir}/weights/pnet.onnx") # Load a ONNX model
input_name_pnet = pnet.get_inputs()[0].name
output_name_pnet1 = pnet.get_outputs()[0].name
output_name_pnet2 = pnet.get_outputs()[1].name
pnet = [pnet, input_name_pnet, [output_name_pnet1, output_name_pnet2]]
rnet = onnxruntime.InferenceSession(f"{basedir}/weights/rnet.onnx") # Load a ONNX model
input_name_rnet = rnet.get_inputs()[0].name
output_name_rnet1 = rnet.get_outputs()[0].name
output_name_rnet2 = rnet.get_outputs()[1].name
rnet = [rnet, input_name_rnet, [output_name_rnet1, output_name_rnet2]]
onet = onnxruntime.InferenceSession(f"{basedir}/weights/onet.onnx") # Load a ONNX model
input_name_onet = onet.get_inputs()[0].name
output_name_onet1 = onet.get_outputs()[0].name
output_name_onet2 = onet.get_outputs()[1].name
output_name_onet3 = onet.get_outputs()[2].name
onet = [onet, input_name_onet, [output_name_onet1, output_name_onet2, output_name_onet3]]
# BUILD AN IMAGE PYRAMID
width, height = image.size
min_length = min(height, width)
min_detection_size = 12
factor = 0.707 # sqrt(0.5)
# scales for scaling the image
scales = []
# scales the image so that
# minimum size that we can detect equals to
# minimum face size that we want to detect
m = min_detection_size/min_face_size
min_length *= m
factor_count = 0
while min_length > min_detection_size:
scales.append(m*factor**factor_count)
min_length *= factor
factor_count += 1
# STAGE 1
# it will be returned
bounding_boxes = []
# run P-Net on different scales
for s in scales:
boxes = run_first_stage(image, pnet, scale=s, threshold=thresholds[0])
bounding_boxes.append(boxes)
# collect boxes (and offsets, and scores) from different scales
bounding_boxes = [i for i in bounding_boxes if i is not None]
bounding_boxes = np.vstack(bounding_boxes)
keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
bounding_boxes = bounding_boxes[keep]
# use offsets predicted by pnet to transform bounding boxes
bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
# shape [n_boxes, 5]
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
# STAGE 2
img_boxes = get_image_boxes(bounding_boxes, image, size=24)
output = rnet[0].run([rnet[2][0], rnet[2][1]], {rnet[1]: img_boxes})
offsets = output[0] # shape [n_boxes, 4]
probs = output[1] # shape [n_boxes, 2]
keep = np.where(probs[:, 1] > thresholds[1])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
offsets = offsets[keep]
keep = nms(bounding_boxes, nms_thresholds[1])
bounding_boxes = bounding_boxes[keep]
bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
# STAGE 3
img_boxes = get_image_boxes(bounding_boxes, image, size=48)
if len(img_boxes) == 0:
return [], []
#img_boxes = Variable(torch.FloatTensor(img_boxes), volatile=True)
# with torch.no_grad():
# img_boxes = torch.FloatTensor(img_boxes)
# output = onet(img_boxes)
output = onet[0].run([onet[2][0], onet[2][1], onet[2][2]], {rnet[1]: img_boxes})
landmarks = output[0] # shape [n_boxes, 10]
offsets = output[1] # shape [n_boxes, 4]
probs = output[2] # shape [n_boxes, 2]
keep = np.where(probs[:, 1] > thresholds[2])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
offsets = offsets[keep]
landmarks = landmarks[keep]
# compute landmark points
width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1)*landmarks[:, 0:5]
landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1)*landmarks[:, 5:10]
bounding_boxes = calibrate_box(bounding_boxes, offsets)
keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
bounding_boxes = bounding_boxes[keep]
landmarks = landmarks[keep]
return bounding_boxes, landmarks
|