File size: 8,404 Bytes
ca46a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
# -*- coding: utf-8 -*-
r"""
@DATE: 2024/9/5 21:52
@File: utils.py
@IDE: pycharm
@Description:
    hivision提供的工具函数
"""
from PIL import Image
import io
import numpy as np
import cv2
import base64


def resize_image_to_kb(input_image, output_image_path, target_size_kb):
    """
    Resize an image to a target size in KB.
    将图像调整大小至目标文件大小(KB)。

    :param input_image_path: Path to the input image. 输入图像的路径。
    :param output_image_path: Path to save the resized image. 保存调整大小后的图像的路径。
    :param target_size_kb: Target size in KB. 目标文件大小(KB)。

    Example:
    resize_image_to_kb('input_image.jpg', 'output_image.jpg', 50)
    """

    if isinstance(input_image, np.ndarray):
        img = Image.fromarray(input_image)
    elif isinstance(input_image, Image.Image):
        img = input_image
    else:
        raise ValueError("input_image must be a NumPy array or PIL Image.")

    # Convert image to RGB mode if it's not
    if img.mode != "RGB":
        img = img.convert("RGB")

    # Initial quality value
    quality = 95

    while True:
        # Create a BytesIO object to hold the image data in memory
        img_byte_arr = io.BytesIO()

        # Save the image to the BytesIO object with the current quality
        img.save(img_byte_arr, format="JPEG", quality=quality)

        # Get the size of the image in KB
        img_size_kb = len(img_byte_arr.getvalue()) / 1024

        # Check if the image size is within the target size
        if img_size_kb <= target_size_kb or quality == 1:
            # If the image is smaller than the target size, add padding
            if img_size_kb < target_size_kb:
                padding_size = int(
                    (target_size_kb * 1024) - len(img_byte_arr.getvalue())
                )
                padding = b"\x00" * padding_size
                img_byte_arr.write(padding)

            # Save the image to the output path
            with open(output_image_path, "wb") as f:
                f.write(img_byte_arr.getvalue())
            break

        # Reduce the quality if the image is still too large
        quality -= 5

        # Ensure quality does not go below 1
        if quality < 1:
            quality = 1


def resize_image_to_kb_base64(input_image, target_size_kb):
    """
    Resize an image to a target size in KB and return it as a base64 encoded string.
    将图像调整大小至目标文件大小(KB)并返回base64编码的字符串。

    :param input_image: Input image as a NumPy array or PIL Image. 输入图像,可以是NumPy数组或PIL图像。
    :param target_size_kb: Target size in KB. 目标文件大小(KB)。

    :return: Base64 encoded string of the resized image. 调整大小后的图像的base64编码字符串。
    """

    if isinstance(input_image, np.ndarray):
        img = Image.fromarray(input_image)
    elif isinstance(input_image, Image.Image):
        img = input_image
    else:
        raise ValueError("input_image must be a NumPy array or PIL Image.")

    # Convert image to RGB mode if it's not
    if img.mode != "RGB":
        img = img.convert("RGB")

    # Initial quality value
    quality = 95

    while True:
        # Create a BytesIO object to hold the image data in memory
        img_byte_arr = io.BytesIO()

        # Save the image to the BytesIO object with the current quality
        img.save(img_byte_arr, format="JPEG", quality=quality)

        # Get the size of the image in KB
        img_size_kb = len(img_byte_arr.getvalue()) / 1024

        # Check if the image size is within the target size
        if img_size_kb <= target_size_kb or quality == 1:
            # If the image is smaller than the target size, add padding
            if img_size_kb < target_size_kb:
                padding_size = int(
                    (target_size_kb * 1024) - len(img_byte_arr.getvalue())
                )
                padding = b"\x00" * padding_size
                img_byte_arr.write(padding)

            # Encode the image data to base64
            img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
            return img_base64

        # Reduce the quality if the image is still too large
        quality -= 5

        # Ensure quality does not go below 1
        if quality < 1:
            quality = 1


def numpy_2_base64(img: np.ndarray):
    _, buffer = cv2.imencode(".png", img)
    base64_image = base64.b64encode(buffer).decode("utf-8")

    return base64_image


def save_numpy_image(numpy_img, file_path):
    # 检查数组的形状
    if numpy_img.shape[2] == 4:
        # 将 BGR 转换为 RGB,并保留透明通道
        rgb_img = np.concatenate(
            (np.flip(numpy_img[:, :, :3], axis=-1), numpy_img[:, :, 3:]), axis=-1
        ).astype(np.uint8)
        img = Image.fromarray(rgb_img, mode="RGBA")
    else:
        # 将 BGR 转换为 RGB
        rgb_img = np.flip(numpy_img, axis=-1).astype(np.uint8)
        img = Image.fromarray(rgb_img, mode="RGB")

    img.save(file_path)


def numpy_to_bytes(numpy_img):
    img = Image.fromarray(numpy_img)
    img_byte_arr = io.BytesIO()
    img.save(img_byte_arr, format="PNG")
    img_byte_arr.seek(0)
    return img_byte_arr


def hex_to_rgb(value):
    value = value.lstrip("#")
    length = len(value)
    return tuple(
        int(value[i : i + length // 3], 16) for i in range(0, length, length // 3)
    )


def generate_gradient(start_color, width, height, mode="updown"):
    # 定义背景颜色
    end_color = (255, 255, 255)  # 白色

    # 创建一个空白图像
    r_out = np.zeros((height, width), dtype=int)
    g_out = np.zeros((height, width), dtype=int)
    b_out = np.zeros((height, width), dtype=int)

    if mode == "updown":
        # 生成上下渐变色
        for y in range(height):
            r = int(
                (y / height) * end_color[0] + ((height - y) / height) * start_color[0]
            )
            g = int(
                (y / height) * end_color[1] + ((height - y) / height) * start_color[1]
            )
            b = int(
                (y / height) * end_color[2] + ((height - y) / height) * start_color[2]
            )
            r_out[y, :] = r
            g_out[y, :] = g
            b_out[y, :] = b

    else:
        # 生成中心渐变色
        img = np.zeros((height, width, 3))
        # 定义椭圆中心和半径
        center = (width // 2, height // 2)
        end_axies = max(height, width)
        # 定义渐变色
        end_color = (255, 255, 255)
        # 绘制椭圆
        for y in range(end_axies):
            axes = (end_axies - y, end_axies - y)
            r = int(
                (y / end_axies) * end_color[0]
                + ((end_axies - y) / end_axies) * start_color[0]
            )
            g = int(
                (y / end_axies) * end_color[1]
                + ((end_axies - y) / end_axies) * start_color[1]
            )
            b = int(
                (y / end_axies) * end_color[2]
                + ((end_axies - y) / end_axies) * start_color[2]
            )

            cv2.ellipse(img, center, axes, 0, 0, 360, (b, g, r), -1)
        b_out, g_out, r_out = cv2.split(np.uint64(img))

    return r_out, g_out, b_out


def add_background(input_image, bgr=(0, 0, 0), mode="pure_color"):
    """
    本函数的功能为为透明图像加上背景。
    :param input_image: numpy.array(4 channels), 透明图像
    :param bgr: tuple, 合成纯色底时的 BGR 值
    :param new_background: numpy.array(3 channels),合成自定义图像底时的背景图
    :return: output: 合成好的输出图像
    """
    height, width = input_image.shape[0], input_image.shape[1]
    b, g, r, a = cv2.split(input_image)
    a_cal = a / 255
    if mode == "pure_color":
        # 纯色填充
        b2 = np.full([height, width], bgr[0], dtype=int)
        g2 = np.full([height, width], bgr[1], dtype=int)
        r2 = np.full([height, width], bgr[2], dtype=int)
    elif mode == "updown_gradient":
        b2, g2, r2 = generate_gradient(bgr, width, height, mode="updown")
    else:
        b2, g2, r2 = generate_gradient(bgr, width, height, mode="center")

    output = cv2.merge(
        ((b - b2) * a_cal + b2, (g - g2) * a_cal + g2, (r - r2) * a_cal + r2)
    )

    return output