Spaces:
Sleeping
Sleeping
File size: 2,707 Bytes
c96e8c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import os
import numpy as np
import pandas as pd
import cv2
import tensorflow as tf
from tensorflow.python.keras import Sequential
from tensorflow.keras import layers, optimizers
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
from tensorflow.keras.initializers import glorot_uniform
from tensorflow.keras.utils import plot_model
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint, LearningRateScheduler
import tensorflow.keras.backend as K
# lets create model now
def resblock(X, f):
'''
function for creating res block
'''
X_copy = X #copy of input
# main path
X = Conv2D(f, kernel_size=(1,1), kernel_initializer='he_normal')(X)
X = BatchNormalization()(X)
X = Activation('relu')(X)
X = Conv2D(f, kernel_size=(3,3), padding='same', kernel_initializer='he_normal')(X)
X = BatchNormalization()(X)
# shortcut path
X_copy = Conv2D(f, kernel_size=(1,1), kernel_initializer='he_normal')(X_copy)
X_copy = BatchNormalization()(X_copy)
# Adding the output from main path and short path together
X = Add()([X, X_copy])
X = Activation('relu')(X)
return X
def upsample_concat(x, skip):
'''
funtion for upsampling image
'''
X = UpSampling2D((2,2))(x)
merge = Concatenate()([X, skip])
return merge
def load_model():
input_shape = (256,256,3)
X_input = Input(input_shape) #iniating tensor of input shape
# Stage 1
conv_1 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(X_input)
conv_1 = BatchNormalization()(conv_1)
conv_1 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv_1)
conv_1 = BatchNormalization()(conv_1)
pool_1 = MaxPool2D((2,2))(conv_1)
# stage 2
conv_2 = resblock(pool_1, 32)
pool_2 = MaxPool2D((2,2))(conv_2)
# Stage 3
conv_3 = resblock(pool_2, 64)
pool_3 = MaxPool2D((2,2))(conv_3)
# Stage 4
conv_4 = resblock(pool_3, 128)
pool_4 = MaxPool2D((2,2))(conv_4)
# Stage 5 (bottle neck)
conv_5 = resblock(pool_4, 256)
# Upsample Stage 1
up_1 = upsample_concat(conv_5, conv_4)
up_1 = resblock(up_1, 128)
# Upsample Stage 2
up_2 = upsample_concat(up_1, conv_3)
up_2 = resblock(up_2, 64)
# Upsample Stage 3
up_3 = upsample_concat(up_2, conv_2)
up_3 = resblock(up_3, 32)
# Upsample Stage 4
up_4 = upsample_concat(up_3, conv_1)
up_4 = resblock(up_4, 16)
# final output
out = Conv2D(1, (1,1), kernel_initializer='he_normal', padding='same', activation='sigmoid')(up_4)
seg_model = Model(X_input, out)
return seg_model |