File size: 16,488 Bytes
e65b3b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# facial_detection.py
import cv2
import numpy as np
from scipy.spatial import distance as dist
from collections import deque
import time
from datetime import datetime

class OpenCVFaceDetector:
    """Face detection and landmark estimation using OpenCV"""
    
    def __init__(self):
        # Load OpenCV's pre-trained face detection models
        self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
        self.eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
        self.mouth_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_smile.xml')
        
        # Try to load MediaPipe for better landmark detection (fallback if not available)
        self.use_mediapipe = False
        try:
            import mediapipe as mp
            self.mp_face_mesh = mp.solutions.face_mesh
            self.mp_drawing = mp.solutions.drawing_utils
            self.face_mesh = self.mp_face_mesh.FaceMesh(
                static_image_mode=False,
                max_num_faces=1,
                refine_landmarks=True,
                min_detection_confidence=0.5,
                min_tracking_confidence=0.5
            )
            self.use_mediapipe = True
            print("βœ… Using MediaPipe for enhanced landmark detection")
        except ImportError:
            print("⚠️ MediaPipe not available, using OpenCV cascade classifiers")
            
        # Define landmark indices for MediaPipe (68-point equivalent)
        self.LEFT_EYE_INDICES = [33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]
        self.RIGHT_EYE_INDICES = [362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385, 384, 398]
        self.MOUTH_INDICES = [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, 415, 310, 311, 312, 13, 82, 81, 80, 62]
        
    def detect_faces_opencv(self, frame):
        """Detect faces using OpenCV Haar cascades"""
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = self.face_cascade.detectMultiScale(gray, 1.3, 5)
        return faces, gray
    
    def estimate_landmarks_opencv(self, frame, face_rect):
        """Estimate key facial landmarks using OpenCV cascades"""
        x, y, w, h = face_rect
        roi_gray = frame[y:y+h, x:x+w]
        roi_color = frame[y:y+h, x:x+w]
        
        # Detect eyes
        eyes = self.eye_cascade.detectMultiScale(roi_gray, 1.1, 3)
        # Detect mouth/smile
        mouths = self.mouth_cascade.detectMultiScale(roi_gray, 1.1, 3)
        
        landmarks = {}
        
        # Process eyes
        if len(eyes) >= 2:
            # Sort eyes by x-coordinate (left to right)
            eyes = sorted(eyes, key=lambda e: e[0])
            landmarks['left_eye'] = (x + eyes[0][0] + eyes[0][2]//2, y + eyes[0][1] + eyes[0][3]//2)
            landmarks['right_eye'] = (x + eyes[1][0] + eyes[1][2]//2, y + eyes[1][1] + eyes[1][3]//2)
            
            # Estimate eye corners based on eye rectangles
            landmarks['left_eye_corners'] = [
                (x + eyes[0][0], y + eyes[0][1] + eyes[0][3]//2),  # left corner
                (x + eyes[0][0] + eyes[0][2], y + eyes[0][1] + eyes[0][3]//2),  # right corner
                (x + eyes[0][0] + eyes[0][2]//2, y + eyes[0][1]),  # top
                (x + eyes[0][0] + eyes[0][2]//2, y + eyes[0][1] + eyes[0][3])  # bottom
            ]
            landmarks['right_eye_corners'] = [
                (x + eyes[1][0], y + eyes[1][1] + eyes[1][3]//2),
                (x + eyes[1][0] + eyes[1][2], y + eyes[1][1] + eyes[1][3]//2),
                (x + eyes[1][0] + eyes[1][2]//2, y + eyes[1][1]),
                (x + eyes[1][0] + eyes[1][2]//2, y + eyes[1][1] + eyes[1][3])
            ]
        
        # Process mouth
        if len(mouths) > 0:
            mouth = mouths[0]  # Take the first detected mouth
            landmarks['mouth_center'] = (x + mouth[0] + mouth[2]//2, y + mouth[1] + mouth[3]//2)
            landmarks['mouth_corners'] = [
                (x + mouth[0], y + mouth[1] + mouth[3]//2),  # left corner
                (x + mouth[0] + mouth[2], y + mouth[1] + mouth[3]//2),  # right corner
                (x + mouth[0] + mouth[2]//2, y + mouth[1]),  # top
                (x + mouth[0] + mouth[2]//2, y + mouth[1] + mouth[3])  # bottom
            ]
        
        # Estimate nose tip (center of face, slightly above mouth)
        landmarks['nose_tip'] = (x + w//2, y + int(h*0.6))
        
        # Estimate chin (bottom center of face)
        landmarks['chin'] = (x + w//2, y + h)
        
        return landmarks
    
    def detect_landmarks_mediapipe(self, frame):
        """Detect landmarks using MediaPipe"""
        rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        results = self.face_mesh.process(rgb_frame)
        
        landmarks_dict = {}
        
        if results.multi_face_landmarks:
            face_landmarks = results.multi_face_landmarks[0]
            h, w, _ = frame.shape
            
            # Extract eye landmarks
            left_eye_points = []
            right_eye_points = []
            mouth_points = []
            
            for i in self.LEFT_EYE_INDICES[:6]:  # Take first 6 points for eye shape
                point = face_landmarks.landmark[i]
                left_eye_points.append((int(point.x * w), int(point.y * h)))
            
            for i in self.RIGHT_EYE_INDICES[:6]:
                point = face_landmarks.landmark[i]
                right_eye_points.append((int(point.x * w), int(point.y * h)))
            
            for i in self.MOUTH_INDICES[:8]:  # Take key mouth points
                point = face_landmarks.landmark[i]
                mouth_points.append((int(point.x * w), int(point.y * h)))
            
            landmarks_dict['left_eye_corners'] = left_eye_points
            landmarks_dict['right_eye_corners'] = right_eye_points
            landmarks_dict['mouth_corners'] = mouth_points
            
            # Key points
            nose_tip = face_landmarks.landmark[1]  # Nose tip
            chin = face_landmarks.landmark[175]    # Chin
            
            landmarks_dict['nose_tip'] = (int(nose_tip.x * w), int(nose_tip.y * h))
            landmarks_dict['chin'] = (int(chin.x * w), int(chin.y * h))
            
            # Calculate face bounding box
            x_coords = [int(lm.x * w) for lm in face_landmarks.landmark]
            y_coords = [int(lm.y * h) for lm in face_landmarks.landmark]
            
            face_rect = (min(x_coords), min(y_coords), 
                        max(x_coords) - min(x_coords), 
                        max(y_coords) - min(y_coords))
            
            return face_rect, landmarks_dict
        
        return None, {}
    
    def detect_landmarks(self, frame):
        """Main method to detect face and landmarks"""
        if self.use_mediapipe:
            face_rect, landmarks = self.detect_landmarks_mediapipe(frame)
            if face_rect is not None:
                return [face_rect], [landmarks]
        
        # Fallback to OpenCV
        faces, gray = self.detect_faces_opencv(frame)
        landmarks_list = []
        face_rects = []
        
        for face in faces:
            landmarks = self.estimate_landmarks_opencv(gray, face)
            if landmarks:
                landmarks_list.append(landmarks)
                face_rects.append(face)
        
        return face_rects, landmarks_list

class MetricsCalculator:
    """Calculate drowsiness metrics from facial landmarks"""
    
    @staticmethod
    def calculate_ear_from_points(eye_points):
        """Calculate Eye Aspect Ratio from eye corner points"""
        if len(eye_points) < 4:
            return 0.3  # Default value
        
        # For 4-point eye estimation: [left, right, top, bottom]
        if len(eye_points) == 4:
            left, right, top, bottom = eye_points
            # Vertical distances
            vertical_dist = dist.euclidean(top, bottom)
            # Horizontal distance
            horizontal_dist = dist.euclidean(left, right)
            
            if horizontal_dist == 0:
                return 0.3
            
            ear = vertical_dist / horizontal_dist
            return ear
        
        # For 6-point eye estimation (MediaPipe style)
        elif len(eye_points) >= 6:
            # Calculate vertical distances
            v1 = dist.euclidean(eye_points[1], eye_points[5])
            v2 = dist.euclidean(eye_points[2], eye_points[4])
            # Horizontal distance
            h = dist.euclidean(eye_points[0], eye_points[3])
            
            if h == 0:
                return 0.3
            
            ear = (v1 + v2) / (2.0 * h)
            return ear
        
        return 0.3
    
    @staticmethod
    def calculate_mar_from_points(mouth_points):
        """Calculate Mouth Aspect Ratio from mouth points"""
        if len(mouth_points) < 4:
            return 0.3  # Default value
        
        if len(mouth_points) == 4:
            # [left, right, top, bottom]
            left, right, top, bottom = mouth_points
            vertical_dist = dist.euclidean(top, bottom)
            horizontal_dist = dist.euclidean(left, right)
            
            if horizontal_dist == 0:
                return 0.3
            
            mar = vertical_dist / horizontal_dist
            return mar
        
        elif len(mouth_points) >= 8:
            # More sophisticated mouth analysis
            # Calculate multiple vertical distances
            v1 = dist.euclidean(mouth_points[1], mouth_points[7])
            v2 = dist.euclidean(mouth_points[2], mouth_points[6])
            v3 = dist.euclidean(mouth_points[3], mouth_points[5])
            
            # Horizontal distance
            h = dist.euclidean(mouth_points[0], mouth_points[4])
            
            if h == 0:
                return 0.3
            
            mar = (v1 + v2 + v3) / (3.0 * h)
            return mar
        
        return 0.3
    
    @staticmethod
    def estimate_head_pose_simple(nose_tip, chin, frame_center):
        """Simple head pose estimation using nose and chin"""
        if nose_tip is None or chin is None:
            return np.array([0, 0, 0])
        
        # Calculate head tilt based on nose-chin line deviation from vertical
        nose_chin_vector = np.array([chin[0] - nose_tip[0], chin[1] - nose_tip[1]])
        vertical_vector = np.array([0, 1])
        
        # Calculate angle from vertical
        dot_product = np.dot(nose_chin_vector, vertical_vector)
        norms = np.linalg.norm(nose_chin_vector) * np.linalg.norm(vertical_vector)
        
        if norms == 0:
            return np.array([0, 0, 0])
        
        cos_angle = dot_product / norms
        angle = np.arccos(np.clip(cos_angle, -1, 1)) * 180 / np.pi
        
        # Determine direction of tilt
        if nose_chin_vector[0] < 0:
            angle = -angle
        
        # Simple pitch estimation based on nose position relative to frame center
        pitch = (nose_tip[1] - frame_center[1]) / frame_center[1] * 30  # Scale to degrees
        
        return np.array([pitch, 0, angle])  # [pitch, yaw, roll]

class DrowsinessAnalyzer:
    """Analyze drowsiness based on facial metrics"""
    
    def __init__(self):
        # Thresholds
        self.EAR_THRESHOLD = 0.20  # Adjusted for OpenCV detection
        self.EAR_CONSECUTIVE_FRAMES = 15
        self.YAWN_THRESHOLD = 0.8  # Adjusted for mouth detection
        self.YAWN_CONSECUTIVE_FRAMES = 10
        self.NOD_THRESHOLD = 20
        
        # Counters
        self.ear_counter = 0
        self.yawn_counter = 0
        self.nod_counter = 0
        
        # History tracking
        self.ear_history = deque(maxlen=30)
        self.yawn_history = deque(maxlen=30)
        self.head_pose_history = deque(maxlen=30)
        
    def analyze_drowsiness(self, ear, mar, head_angles):
        """Analyze current metrics and return drowsiness indicators"""
        drowsiness_indicators = []
        
        # Update history
        self.ear_history.append(ear)
        self.yawn_history.append(mar)
        self.head_pose_history.append(head_angles[0])
        
        # Check EAR (eyes closed detection)
        if ear < self.EAR_THRESHOLD:
            self.ear_counter += 1
            if self.ear_counter >= self.EAR_CONSECUTIVE_FRAMES:
                drowsiness_indicators.append("EYES_CLOSED")
        else:
            self.ear_counter = 0
        
        # Check yawning
        if mar > self.YAWN_THRESHOLD:
            self.yawn_counter += 1
            if self.yawn_counter >= self.YAWN_CONSECUTIVE_FRAMES:
                drowsiness_indicators.append("YAWNING")
        else:
            self.yawn_counter = 0
        
        # Check head nodding
        if abs(head_angles[0]) > self.NOD_THRESHOLD:
            self.nod_counter += 1
            if self.nod_counter >= 8:
                drowsiness_indicators.append("HEAD_NOD")
        else:
            self.nod_counter = 0
        
        return drowsiness_indicators
    
    def get_severity_level(self, indicators):
        """Determine severity based on indicators"""
        if len(indicators) >= 2:
            return "critical"
        elif "EYES_CLOSED" in indicators:
            return "high"
        elif indicators:
            return "medium"
        else:
            return "normal"

class AlertManager:
    """Manage alert generation and timing"""
    
    def __init__(self, cooldown_seconds=8):
        self.last_alert_time = 0
        self.cooldown_seconds = cooldown_seconds
        
    def should_trigger_alert(self, indicators):
        """Check if alert should be triggered"""
        current_time = time.time()
        if indicators and (current_time - self.last_alert_time) > self.cooldown_seconds:
            self.last_alert_time = current_time
            return True
        return False

class VisualizationRenderer:
    """Handle visual rendering of detection results"""
    
    @staticmethod
    def draw_landmarks_and_contours(frame, landmarks, face_rect):
        """Draw facial landmarks and detection areas"""
        x, y, w, h = face_rect
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        
        # Draw eye areas
        if 'left_eye_corners' in landmarks:
            points = np.array(landmarks['left_eye_corners'], np.int32)
            cv2.polylines(frame, [points], True, (0, 255, 0), 2)
        
        if 'right_eye_corners' in landmarks:
            points = np.array(landmarks['right_eye_corners'], np.int32)
            cv2.polylines(frame, [points], True, (0, 255, 0), 2)
        
        # Draw mouth area
        if 'mouth_corners' in landmarks:
            points = np.array(landmarks['mouth_corners'], np.int32)
            cv2.polylines(frame, [points], True, (0, 255, 255), 2)
        
        # Draw key points
        key_points = ['nose_tip', 'chin']
        for point_name in key_points:
            if point_name in landmarks:
                cv2.circle(frame, landmarks[point_name], 3, (255, 0, 0), -1)
    
    @staticmethod
    def draw_metrics_overlay(frame, ear, mar, head_angle, indicators):
        """Draw metrics and alerts on frame"""
        # Metrics text
        cv2.putText(frame, f"EAR: {ear:.3f}", (10, frame.shape[0] - 80), 
                   cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
        cv2.putText(frame, f"MAR: {mar:.3f}", (10, frame.shape[0] - 60), 
                   cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
        cv2.putText(frame, f"Head: {head_angle:.1f}Β°", (10, frame.shape[0] - 40), 
                   cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
        
        # Alert overlay
        if indicators:
            cv2.putText(frame, "⚠️ DROWSINESS ALERT! ⚠️", (50, 50), 
                       cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 3)

class StatusLogger:
    """Handle logging and status tracking"""
    
    def __init__(self, max_logs=100):
        self.status_log = deque(maxlen=max_logs)
        
    def log(self, message):
        """Add timestamped log entry"""
        timestamp = datetime.now().strftime("%H:%M:%S")
        self.status_log.append(f"[{timestamp}] {message}")
        
    def get_recent_logs(self, count=10):
        """Get recent log entries"""
        return list(self.status_log)[-count:]