Spaces:
Runtime error
Runtime error
File size: 16,488 Bytes
e65b3b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# facial_detection.py
import cv2
import numpy as np
from scipy.spatial import distance as dist
from collections import deque
import time
from datetime import datetime
class OpenCVFaceDetector:
"""Face detection and landmark estimation using OpenCV"""
def __init__(self):
# Load OpenCV's pre-trained face detection models
self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
self.eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
self.mouth_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_smile.xml')
# Try to load MediaPipe for better landmark detection (fallback if not available)
self.use_mediapipe = False
try:
import mediapipe as mp
self.mp_face_mesh = mp.solutions.face_mesh
self.mp_drawing = mp.solutions.drawing_utils
self.face_mesh = self.mp_face_mesh.FaceMesh(
static_image_mode=False,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
self.use_mediapipe = True
print("β
Using MediaPipe for enhanced landmark detection")
except ImportError:
print("β οΈ MediaPipe not available, using OpenCV cascade classifiers")
# Define landmark indices for MediaPipe (68-point equivalent)
self.LEFT_EYE_INDICES = [33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]
self.RIGHT_EYE_INDICES = [362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385, 384, 398]
self.MOUTH_INDICES = [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308, 415, 310, 311, 312, 13, 82, 81, 80, 62]
def detect_faces_opencv(self, frame):
"""Detect faces using OpenCV Haar cascades"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.3, 5)
return faces, gray
def estimate_landmarks_opencv(self, frame, face_rect):
"""Estimate key facial landmarks using OpenCV cascades"""
x, y, w, h = face_rect
roi_gray = frame[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
# Detect eyes
eyes = self.eye_cascade.detectMultiScale(roi_gray, 1.1, 3)
# Detect mouth/smile
mouths = self.mouth_cascade.detectMultiScale(roi_gray, 1.1, 3)
landmarks = {}
# Process eyes
if len(eyes) >= 2:
# Sort eyes by x-coordinate (left to right)
eyes = sorted(eyes, key=lambda e: e[0])
landmarks['left_eye'] = (x + eyes[0][0] + eyes[0][2]//2, y + eyes[0][1] + eyes[0][3]//2)
landmarks['right_eye'] = (x + eyes[1][0] + eyes[1][2]//2, y + eyes[1][1] + eyes[1][3]//2)
# Estimate eye corners based on eye rectangles
landmarks['left_eye_corners'] = [
(x + eyes[0][0], y + eyes[0][1] + eyes[0][3]//2), # left corner
(x + eyes[0][0] + eyes[0][2], y + eyes[0][1] + eyes[0][3]//2), # right corner
(x + eyes[0][0] + eyes[0][2]//2, y + eyes[0][1]), # top
(x + eyes[0][0] + eyes[0][2]//2, y + eyes[0][1] + eyes[0][3]) # bottom
]
landmarks['right_eye_corners'] = [
(x + eyes[1][0], y + eyes[1][1] + eyes[1][3]//2),
(x + eyes[1][0] + eyes[1][2], y + eyes[1][1] + eyes[1][3]//2),
(x + eyes[1][0] + eyes[1][2]//2, y + eyes[1][1]),
(x + eyes[1][0] + eyes[1][2]//2, y + eyes[1][1] + eyes[1][3])
]
# Process mouth
if len(mouths) > 0:
mouth = mouths[0] # Take the first detected mouth
landmarks['mouth_center'] = (x + mouth[0] + mouth[2]//2, y + mouth[1] + mouth[3]//2)
landmarks['mouth_corners'] = [
(x + mouth[0], y + mouth[1] + mouth[3]//2), # left corner
(x + mouth[0] + mouth[2], y + mouth[1] + mouth[3]//2), # right corner
(x + mouth[0] + mouth[2]//2, y + mouth[1]), # top
(x + mouth[0] + mouth[2]//2, y + mouth[1] + mouth[3]) # bottom
]
# Estimate nose tip (center of face, slightly above mouth)
landmarks['nose_tip'] = (x + w//2, y + int(h*0.6))
# Estimate chin (bottom center of face)
landmarks['chin'] = (x + w//2, y + h)
return landmarks
def detect_landmarks_mediapipe(self, frame):
"""Detect landmarks using MediaPipe"""
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = self.face_mesh.process(rgb_frame)
landmarks_dict = {}
if results.multi_face_landmarks:
face_landmarks = results.multi_face_landmarks[0]
h, w, _ = frame.shape
# Extract eye landmarks
left_eye_points = []
right_eye_points = []
mouth_points = []
for i in self.LEFT_EYE_INDICES[:6]: # Take first 6 points for eye shape
point = face_landmarks.landmark[i]
left_eye_points.append((int(point.x * w), int(point.y * h)))
for i in self.RIGHT_EYE_INDICES[:6]:
point = face_landmarks.landmark[i]
right_eye_points.append((int(point.x * w), int(point.y * h)))
for i in self.MOUTH_INDICES[:8]: # Take key mouth points
point = face_landmarks.landmark[i]
mouth_points.append((int(point.x * w), int(point.y * h)))
landmarks_dict['left_eye_corners'] = left_eye_points
landmarks_dict['right_eye_corners'] = right_eye_points
landmarks_dict['mouth_corners'] = mouth_points
# Key points
nose_tip = face_landmarks.landmark[1] # Nose tip
chin = face_landmarks.landmark[175] # Chin
landmarks_dict['nose_tip'] = (int(nose_tip.x * w), int(nose_tip.y * h))
landmarks_dict['chin'] = (int(chin.x * w), int(chin.y * h))
# Calculate face bounding box
x_coords = [int(lm.x * w) for lm in face_landmarks.landmark]
y_coords = [int(lm.y * h) for lm in face_landmarks.landmark]
face_rect = (min(x_coords), min(y_coords),
max(x_coords) - min(x_coords),
max(y_coords) - min(y_coords))
return face_rect, landmarks_dict
return None, {}
def detect_landmarks(self, frame):
"""Main method to detect face and landmarks"""
if self.use_mediapipe:
face_rect, landmarks = self.detect_landmarks_mediapipe(frame)
if face_rect is not None:
return [face_rect], [landmarks]
# Fallback to OpenCV
faces, gray = self.detect_faces_opencv(frame)
landmarks_list = []
face_rects = []
for face in faces:
landmarks = self.estimate_landmarks_opencv(gray, face)
if landmarks:
landmarks_list.append(landmarks)
face_rects.append(face)
return face_rects, landmarks_list
class MetricsCalculator:
"""Calculate drowsiness metrics from facial landmarks"""
@staticmethod
def calculate_ear_from_points(eye_points):
"""Calculate Eye Aspect Ratio from eye corner points"""
if len(eye_points) < 4:
return 0.3 # Default value
# For 4-point eye estimation: [left, right, top, bottom]
if len(eye_points) == 4:
left, right, top, bottom = eye_points
# Vertical distances
vertical_dist = dist.euclidean(top, bottom)
# Horizontal distance
horizontal_dist = dist.euclidean(left, right)
if horizontal_dist == 0:
return 0.3
ear = vertical_dist / horizontal_dist
return ear
# For 6-point eye estimation (MediaPipe style)
elif len(eye_points) >= 6:
# Calculate vertical distances
v1 = dist.euclidean(eye_points[1], eye_points[5])
v2 = dist.euclidean(eye_points[2], eye_points[4])
# Horizontal distance
h = dist.euclidean(eye_points[0], eye_points[3])
if h == 0:
return 0.3
ear = (v1 + v2) / (2.0 * h)
return ear
return 0.3
@staticmethod
def calculate_mar_from_points(mouth_points):
"""Calculate Mouth Aspect Ratio from mouth points"""
if len(mouth_points) < 4:
return 0.3 # Default value
if len(mouth_points) == 4:
# [left, right, top, bottom]
left, right, top, bottom = mouth_points
vertical_dist = dist.euclidean(top, bottom)
horizontal_dist = dist.euclidean(left, right)
if horizontal_dist == 0:
return 0.3
mar = vertical_dist / horizontal_dist
return mar
elif len(mouth_points) >= 8:
# More sophisticated mouth analysis
# Calculate multiple vertical distances
v1 = dist.euclidean(mouth_points[1], mouth_points[7])
v2 = dist.euclidean(mouth_points[2], mouth_points[6])
v3 = dist.euclidean(mouth_points[3], mouth_points[5])
# Horizontal distance
h = dist.euclidean(mouth_points[0], mouth_points[4])
if h == 0:
return 0.3
mar = (v1 + v2 + v3) / (3.0 * h)
return mar
return 0.3
@staticmethod
def estimate_head_pose_simple(nose_tip, chin, frame_center):
"""Simple head pose estimation using nose and chin"""
if nose_tip is None or chin is None:
return np.array([0, 0, 0])
# Calculate head tilt based on nose-chin line deviation from vertical
nose_chin_vector = np.array([chin[0] - nose_tip[0], chin[1] - nose_tip[1]])
vertical_vector = np.array([0, 1])
# Calculate angle from vertical
dot_product = np.dot(nose_chin_vector, vertical_vector)
norms = np.linalg.norm(nose_chin_vector) * np.linalg.norm(vertical_vector)
if norms == 0:
return np.array([0, 0, 0])
cos_angle = dot_product / norms
angle = np.arccos(np.clip(cos_angle, -1, 1)) * 180 / np.pi
# Determine direction of tilt
if nose_chin_vector[0] < 0:
angle = -angle
# Simple pitch estimation based on nose position relative to frame center
pitch = (nose_tip[1] - frame_center[1]) / frame_center[1] * 30 # Scale to degrees
return np.array([pitch, 0, angle]) # [pitch, yaw, roll]
class DrowsinessAnalyzer:
"""Analyze drowsiness based on facial metrics"""
def __init__(self):
# Thresholds
self.EAR_THRESHOLD = 0.20 # Adjusted for OpenCV detection
self.EAR_CONSECUTIVE_FRAMES = 15
self.YAWN_THRESHOLD = 0.8 # Adjusted for mouth detection
self.YAWN_CONSECUTIVE_FRAMES = 10
self.NOD_THRESHOLD = 20
# Counters
self.ear_counter = 0
self.yawn_counter = 0
self.nod_counter = 0
# History tracking
self.ear_history = deque(maxlen=30)
self.yawn_history = deque(maxlen=30)
self.head_pose_history = deque(maxlen=30)
def analyze_drowsiness(self, ear, mar, head_angles):
"""Analyze current metrics and return drowsiness indicators"""
drowsiness_indicators = []
# Update history
self.ear_history.append(ear)
self.yawn_history.append(mar)
self.head_pose_history.append(head_angles[0])
# Check EAR (eyes closed detection)
if ear < self.EAR_THRESHOLD:
self.ear_counter += 1
if self.ear_counter >= self.EAR_CONSECUTIVE_FRAMES:
drowsiness_indicators.append("EYES_CLOSED")
else:
self.ear_counter = 0
# Check yawning
if mar > self.YAWN_THRESHOLD:
self.yawn_counter += 1
if self.yawn_counter >= self.YAWN_CONSECUTIVE_FRAMES:
drowsiness_indicators.append("YAWNING")
else:
self.yawn_counter = 0
# Check head nodding
if abs(head_angles[0]) > self.NOD_THRESHOLD:
self.nod_counter += 1
if self.nod_counter >= 8:
drowsiness_indicators.append("HEAD_NOD")
else:
self.nod_counter = 0
return drowsiness_indicators
def get_severity_level(self, indicators):
"""Determine severity based on indicators"""
if len(indicators) >= 2:
return "critical"
elif "EYES_CLOSED" in indicators:
return "high"
elif indicators:
return "medium"
else:
return "normal"
class AlertManager:
"""Manage alert generation and timing"""
def __init__(self, cooldown_seconds=8):
self.last_alert_time = 0
self.cooldown_seconds = cooldown_seconds
def should_trigger_alert(self, indicators):
"""Check if alert should be triggered"""
current_time = time.time()
if indicators and (current_time - self.last_alert_time) > self.cooldown_seconds:
self.last_alert_time = current_time
return True
return False
class VisualizationRenderer:
"""Handle visual rendering of detection results"""
@staticmethod
def draw_landmarks_and_contours(frame, landmarks, face_rect):
"""Draw facial landmarks and detection areas"""
x, y, w, h = face_rect
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Draw eye areas
if 'left_eye_corners' in landmarks:
points = np.array(landmarks['left_eye_corners'], np.int32)
cv2.polylines(frame, [points], True, (0, 255, 0), 2)
if 'right_eye_corners' in landmarks:
points = np.array(landmarks['right_eye_corners'], np.int32)
cv2.polylines(frame, [points], True, (0, 255, 0), 2)
# Draw mouth area
if 'mouth_corners' in landmarks:
points = np.array(landmarks['mouth_corners'], np.int32)
cv2.polylines(frame, [points], True, (0, 255, 255), 2)
# Draw key points
key_points = ['nose_tip', 'chin']
for point_name in key_points:
if point_name in landmarks:
cv2.circle(frame, landmarks[point_name], 3, (255, 0, 0), -1)
@staticmethod
def draw_metrics_overlay(frame, ear, mar, head_angle, indicators):
"""Draw metrics and alerts on frame"""
# Metrics text
cv2.putText(frame, f"EAR: {ear:.3f}", (10, frame.shape[0] - 80),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(frame, f"MAR: {mar:.3f}", (10, frame.shape[0] - 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(frame, f"Head: {head_angle:.1f}Β°", (10, frame.shape[0] - 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
# Alert overlay
if indicators:
cv2.putText(frame, "β οΈ DROWSINESS ALERT! β οΈ", (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 3)
class StatusLogger:
"""Handle logging and status tracking"""
def __init__(self, max_logs=100):
self.status_log = deque(maxlen=max_logs)
def log(self, message):
"""Add timestamped log entry"""
timestamp = datetime.now().strftime("%H:%M:%S")
self.status_log.append(f"[{timestamp}] {message}")
def get_recent_logs(self, count=10):
"""Get recent log entries"""
return list(self.status_log)[-count:] |